Advertisement

Homotopic Transformations of Combinatorial Maps

  • Jocelyn Marchadier
  • Walter G. Kropatsch
  • Allan Hanbury
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

In this contribution, we propose the notion of homotopy for both combinatorial maps and weighted combinatorial maps. We also describe transformations that are homotopic in the defined sense. The usefulness of the concept introduced is illustrated using two applications. The first one consists in calculating a skeleton using homotopic transformations of weighted combinatorial maps. The result is a compact combinatorial map describing the structure of the skeleton which may be viewed as a ”combinatorial map skeleton”. The second application consists in run length encoding of all the regions described by a combinatorial map. Although these demonstrations are defined on combinatorial maps defined on a square grid, the major insights of the paper are independent of the embedding.

Keywords

Homotopy skeletonization combinatorial map 

References

  1. 1.
    Ayala, R., Dominguez, E., Francés, A.R., Quintero, A.: Homotopy in digital spaces. Discrete Applied Mathematics 125(1), 218–228 (2003)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G.: New Notions for Discrete Topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 3–24. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Braquelaire, J.-P., Brun, L.: Image Segmentation with Topological Maps and Interpixel Representation. Journal of Visual Communication and Image Representation 9(1), 62–79 (1998)CrossRefGoogle Scholar
  4. 4.
    Brun, L., Kropatsch, W.G.: Dual Contraction of Combinatorial Maps., PRIPTR- 54, Vienna University of Technology, p. 37 (1999)Google Scholar
  5. 5.
    Burge, M., Kropatsch, W.G.: A Minimal Line Property Preserving Representation of Line Images. Computing 62, 355–368 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fiorio, C.: A topologically Consistent Representation for Image Analysis: the Frontiers Topological Graph. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Gangnet, M., Hervé, J.-C., Pudet, T., Van Tong, J.-M.: Incremental Computation of Planar Maps. SIGGRAPH Proc., Computer Graphics 23(3), 345–354 (1989)CrossRefGoogle Scholar
  8. 8.
    Glantz, R., Englert, R.: Dual Image Graph Contractions Invariant to Monotonic Transformations of Image Intensity. In: Proc. of the 2nd Int. IAPR Workshop on Graph-based Representation (1999)Google Scholar
  9. 9.
    Kropatsch, W.G.: Property Preserving Hierarchical Graph Transformations. In: Arcelli, C., Cordella, L., Sanniti di Baja, G. (eds.) Advances in Visual Form Analysis, pp. 340–349 (1997)Google Scholar
  10. 10.
    Lienhardt, P.: Topological Models for boundary representation: a comparison with n-dimensional generalized maps. Computer Aided Design 23(1), 59–82 (1991)zbMATHCrossRefGoogle Scholar
  11. 11.
    Marchadier, J., Arquès, D., Michelin, M.: Thinning Grayscale Well-Composed Images: A New Approach for Topological Coherent Image Segmentation. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 360–371. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Meyer, F.: Skeletons and Perceptual Graphs. Signal Processing 16, 335–363 (1989)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pierrot Deseilligny, M., Stamon, G., Suen, C.: Veinerization: A New Shape Description for Flexible Skeletonization. IEEE Trans. on PAMI 20(5), 505–521 (1998)Google Scholar
  14. 14.
    Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters 23, 687–702 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Serra, J.: Image Analysis and Mathematical Morphology, p. 610. Academic Press, London (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jocelyn Marchadier
    • 1
  • Walter G. Kropatsch
    • 1
  • Allan Hanbury
    • 1
  1. 1.Pattern Recognition and Image Processing Group(PRIP)WienAustria

Personalised recommendations