Skip to main content

Predictive synchrony organized by spike-based Hebbian learning with time-representing synfire activities

  • Chapter
Neural Information Processing: Research and Development

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 152))

Abstract

In this chapter, we introduce a computational model to give a theoretical account for a phenomenon experimentally observed in neural activity of behaving animals. Pairs of neurons in the primary motor cortex exhibit significant increases of coincident spikes at times when a monkey expects behavioral events. The result provides an evidence that such a synchrony has predictive power. To investigate the underlying mechanism of such a predictive synchrony, we construct a computational model based on two known characteristics in the brain: one is the synfire chain, the other is spike-timing-dependent plasticity. The synfire chain is a model to explain a precisely firing spike sequence observed in frontal parts of the cortex. Synaptic plasticity, which is commonly believed a basic phenomenon underlying learning and memory, has been reported to depend on relative timings of neuronal spikes. In the proposed model, occurrence times of events are embedded in synapses from the synfire chains to time-coding neurons through spike-timing-dependent synaptic plasticity. We also discuss the robustness of the proposed mechanism and possible information coding in this cortical region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riehle A, Grün S, Diesmann M, Aertsen A (1997) Science 278: 1950–1953

    Article  Google Scholar 

  2. Fuster JM (2001) Neuron 30: 319–333

    Article  Google Scholar 

  3. Niki H, Watanabe M (1976) Brain Res 105: 79–88

    Article  Google Scholar 

  4. Goldman-Rakic PS (1995) Toward a circuit model of working memory and the guidance of voluntary motor action. In: Houk JC, Davis JL, Beiser DG. (eds) Models of Information Processing in the Basal Ganglia. MIT Press, Cambridge

    Google Scholar 

  5. Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Raven, New York

    Google Scholar 

  6. Funahashi S, Inoue M (2000) Cerebral Cortex 10: 535–551

    Article  Google Scholar 

  7. Abeles M, Bergmann H, Margalit E, Vaadia E (1993) J Neurophysiol 70: 1629–1638

    Google Scholar 

  8. Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M (1998) J Neurophysiol 79: 2857–2874

    Google Scholar 

  9. Abeles M (1991) Corticonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Diesmann D, Gewaltig MO, Aertsen A (1999) Nature 402: 529–533

    Article  Google Scholar 

  11. Câteau H, Fukai T (2001) Neural Netw 14: 675–685

    Article  Google Scholar 

  12. Aviel Y, Mehring C, Abeles M, Horn D (2003) Neural Comput 15: 1321–1340

    Article  MATH  Google Scholar 

  13. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Science 275: 213–215

    Article  Google Scholar 

  14. Levy N, Horn D, Meilijson I, Ruppin E (2001) Neural Netw 6–7: 815–824

    Article  Google Scholar 

  15. Kitano K, Câteau H, Fukai T (2002) NeuroReport 13: 795–798

    Article  Google Scholar 

  16. Tao HW, Zhang LI, Bi G-q, Poo M-m (2000) J Neurosci 20: 3233–3243

    Google Scholar 

  17. Miller R (1996) Biol Cybern 75: 263–275

    Article  Google Scholar 

  18. Arnoldi HM, Englmeier KH, Brauer W (1999) Biol Cybern 80: 433–447

    Article  Google Scholar 

  19. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  20. Bi G-q, Poo M-m (1998) J Neurosci 18: 10464–10472

    Google Scholar 

  21. Bi G-q, Poo M-m (2001) Annu Rev Neurosci 24: 139–166

    Article  Google Scholar 

  22. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) Nature 383: 76–78

    Article  Google Scholar 

  23. Song S, Miller KD, Abbott LF (2000) Nature Neurosci 3: 919–926

    Article  Google Scholar 

  24. Kitano K, Okamoto H, Fukai T (2003) Biol Cybern 88: 387–94

    Article  MATH  Google Scholar 

  25. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I. (eds) Methods in Neural Modeling. MIT Press, Cambridge

    Google Scholar 

  26. Grün S, Diesmann M, Aertsen A (2002) Neural Comput 14: 43–80

    Article  MATH  Google Scholar 

  27. Grün S, Diesmann M, Aertsen A (2002) Neural Comput 14: 81–119

    Article  MATH  Google Scholar 

  28. Riehle A, Grammont F, Diesmann M, Grün S (2000) J Physiol (Paris) 94: 569–582

    Article  Google Scholar 

  29. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) J Neurosci 2: 1527–1537

    Google Scholar 

  30. Muir RB, Lemon RN (1983) Brain Res 261: 312–316

    Article  Google Scholar 

  31. Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) J Neurosci 9: 2080–2102

    Google Scholar 

  32. Hatsopoulos NG, Ojakangas CL, Paninski K, Donoghue JP (1998) Proc Natl Acad Sci USA 95: 15706–15711

    Article  Google Scholar 

  33. Baker SN, Spinks R, Jackson A, Lemon RN (2001) J Neurophysiol 85: 869–885

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kitano, K., Fukai, T. (2004). Predictive synchrony organized by spike-based Hebbian learning with time-representing synfire activities. In: Rajapakse, J.C., Wang, L. (eds) Neural Information Processing: Research and Development. Studies in Fuzziness and Soft Computing, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39935-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39935-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53564-2

  • Online ISBN: 978-3-540-39935-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics