Skip to main content

Traffic Balance using Classifier Systems in an Agent based Simulation

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 150))

Abstract

As cities develop their authorities encounter the problem of providing efficient means of transport for their inhabitants. The multiple mode of transport options, make the inhabitants of cities contemplate the complex problem — whether to go by bicycle, car, bus, tram, trolleybus, underground (subway, metropolitan) or suburban trains — to travel to their wanted destinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. W.B. Arthur. Complexity in Economic Theory: Inductive Reasoning and Bounded Rationality. The American Economic Review, 84 (2): 406 – 411, May 1994. "http://www.santafe.edu/’wba/Papers/E1Farol.html".

    Google Scholar 

  2. W.B. Arthur, J.H. Holland, B. LeBaron, R. Palmer, and P. Taylor. Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. In W.B. Arthur, S. Durlauf, and D. Lane, editors, The Economy as an Evolving Complex System, II, Reading, MA., 1997. Addison-Wesley. Proceedings Volume XX VII.

    Google Scholar 

  3. A. Bazzan, R. Bordini, G. Andrioti, R. Vicari, and J. Wahle. Wayward agents in a commuting scenario (personalities in the minority game). In Proceedings of the 4th Int. Conf. on MultiAgent Systems (ICMAS-2000), pages 55–63. Springer-Verlag, 2000.

    Google Scholar 

  4. C. Bhat. Accommodating flexible substitution patterns in multidimensional choice modeling: Formulation and application to travel mode and departure time choice. Transportation Research Part B, 32 (7): 455–466, 1998.

    Article  Google Scholar 

  5. K. Binmore. Fun and games: a text on game theory. D.C. Heath, 1992.

    MATH  Google Scholar 

  6. L. Bull. On ZCS in Multi-agent Environments. In A.E. Eiben, T. Baeck, M. Schoenauer, and H-P. Schwefel, editors, Parallel Problem from Nature V, pages 471–480. Springer-Verlag, 1998.

    Google Scholar 

  7. L. Bull. On using ZCS in a simulated continuous double-auction market. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 83–90. Morgan Kaufmann, 1999.

    Google Scholar 

  8. L. Bull and J. Hurst. ZCS redux. Evolutionary Computation, 10 (2): 185–205, 2002.

    Article  Google Scholar 

  9. L. Bull, J. Hurst, and A. Tomlinson. Mutation in Classifier System Controllers. In J. A. Meyer et al., editor, From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, pages 460–467, 2000.

    Google Scholar 

  10. M.V. Butz and S.W. Wilson. An algorithmic description of XCS. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Advances in Learning Classifier Systems. Third International Workshop (IWLCS-2000), pages 253–272, Berlin, 2001. Springer-Verlag.

    Chapter  Google Scholar 

  11. Butz and Pelikan(2001)] M.V. Butz and M. Pelikan. Analyzing the Evolutionary Pressures in XCS. In L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),pages 935–942, San Francisco, California, USA, July 7–112001. Morgan Kaufmann.

    Google Scholar 

  12. C. Castelfranchi and R. Conte Limits of economic and strategic rationality for agents and MA systems. Robotics and Autonomous Systems, 24: 127–139, 1998.

    Article  Google Scholar 

  13. A. Cavagna. Irrelevance of Memory in the Minority Game. Phys. rev. E, (59), 1999. R3783.

    Google Scholar 

  14. D. Challet and Y. C. Zhang. Emergence of Cooperation and Organization in an Evolutionary Game. Physica A, 246, 1997. Available at http://www.unifr.ch/econophysics/.

  15. D. Challet and Y. C. Zhang. On the minority game: Analytical and numerical studies. Physica A, 256: 407, 1998. Available at http://www.unifr.ch/econophysics/.

    Google Scholar 

  16. Davidsson(2000)] P. Davidsson. Multi–Agent Based Simulation: Beyond Social Simulation. In Moss and Davidsson [2000], pages 97–102. ISBN 3–540–41522–X.

    Google Scholar 

  17. L. Davis, C. Fu, and S. W. Wilson. An Incremental Multiplexer Problem and its Uses in Classifier System Research. In W. Stolzman, editor, Fourth International Workshop on Learning Classifier Systems - IWLCS-2001, pages 23–32. Springer-Verlag, 2002.

    Google Scholar 

  18. I. Dickinson. Agent Standards. Technical Report HPL-97–156, Hewlett-Packard Laboratories, Bristol, U.K., 1997. Available at http://www.hpl.hp.com/techreports/97/HPL-97-156.html.

    Google Scholar 

  19. J. Ferber. Multi-Agent Systems: An introduction to distributed artificial intelligence. Adisson Wesley, 1999.

    Google Scholar 

  20. P. Ferrari. A model of urban transport management. Transportation Research Part B, (33): 43–61, 1999.

    Google Scholar 

  21. D.E. Goldberg. Genetic algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1989.

    Google Scholar 

  22. L. Miramontes Hercog. Evolutionary and Conventional Reinforcement Learning in Multi-agent Systems for Social Simulation. PhD thesis, South Bank University, 2003.

    Google Scholar 

  23. L. Miramontes Hercog and T.C. Fogarty. XCS-Based Inductive Intelligent Multi-agent System. In Darrell Whitley, editor, Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, pages 125–132, Las Vegas, Nevada, USA, 8 July 2000.

    Google Scholar 

  24. Hercog and Fogarty(2001)] L. Miramontes Hercog and T.C. Fogarty. Innovative Tools for Scientific Computation in Aeronautical Engineering,chapter Analysis of inductive intelligence in XCS–based multi–agent system (MAXCS), pages 351–366. CIMNE, Barcelona, 2001. ISBN: 84–90025–78–X.

    Google Scholar 

  25. L. Miramontes Hercog and T.C. Fogarty. Social simulation using a Multi–Agent Model based on Classifier Systems: The Emergence of Vacillating Behaviour in the “El Faroe’ Bar Problem. In P.L. Lanzi, W. Stolzman, and S. W. Wilson, editors, Advances in Learning Classifier Systems. Proceedings of the Fourth International Workshop in Learning Classifier Systems 2001. Springer–Verlag, 2002. LNAI series 2321. ISBN: 3–540–43793–2.

    Google Scholar 

  26. Hercog and Fogarty(2002b)] L. Miramontes Hercog and T.C. Fogarty. Co–evolutionary classifier systems for multi–agent simulation. In D. B. Fogel, Mohamed A. ElSharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,pages 1798–1803. IEEE Press, 2002. ISBN 0–7803–7278–6.

    Google Scholar 

  27. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

    Google Scholar 

  28. J.H. Holland. Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski, and Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.

    Google Scholar 

  29. J.H. Holland. Hidden Order. Addison-Wesley, 1995.

    Google Scholar 

  30. J.H. Holland. Emergence. Oxford University Press, 1998.

    Google Scholar 

  31. J.H. Holland and J. Miller. Artificially Adaptive Agents in economic theory. American Economic Review, 81 (2): 265–370, 1991.

    Google Scholar 

  32. J.H. Holland and J.S. Reitman. Cognitive Systems Based on Adaptive Algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed Inference Systems. New York: Academic Press, 1978.

    Google Scholar 

  33. Kovacs(1997)] T. Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. In Roy, Chawdhry, and Pant, editors, Soft Computing in Engineering Design and Manufacturing,pages 5968. Springer–Verlag, London, 1997. ISBN 3–540–76214–0.

    Google Scholar 

  34. T. Kovacs. Strength or Accuracy? A comparison of two approaches to fitness calculation in learning classifier systems. In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors, Learning Classifier Systems. From Foundations to Applications, volume 1813 of LNAI, pages 258–265, Berlin, 2000. Springer-Verlag.

    Google Scholar 

  35. M. L. Littman. Value-function reinforcement learning in Markov games. Journal of Cognitive Systems Research, (2): 55–66, 2001.

    Google Scholar 

  36. Moss and Davidsson(2000)] S. Moss and P. Davidsson, editors. Multi–Agent–Based Simulation,volume 1979 of LNAI,2000. Springer–Verlag. ISBN 3–540–41522–X.

    Google Scholar 

  37. J. Nash. Equilibrium Points in N-Person Games. PNAS, 36: 48–49, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Pérez-Uribe and B. Hirsbrunner. The Risk of Exploration in Multi-Agent Learning Systems: A Case Study. In Proceedings of the AGENTS-00/ECML-00 Joint Workshop on Learning Agents, pages 33–37, 2000.

    Google Scholar 

  39. Schillo et al.(2000)] M. Schillo, K. Fischer, and C.T. Klein. The Micro-Macro Link in DAI and Sociology. In Moss and Davidsson [2000], pages 133–148. ISBN 3–54041522-X.

    Google Scholar 

  40. F. Seredynski, P. Cichosz, and G. P. Klebus. Learning classifier systems in multi-agent environments. In Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA’95), pages 287,292, Sheffield, UK, 1995.

    Google Scholar 

  41. R.S. Sutton and A. Barto. Reinforcement Learning: An introduction. MIT Press, 1998.

    Google Scholar 

  42. N. Vriend. Self-Organization of Markets: An Example of a Computational Approach. Computational Economics, (8): 205–231, 1995.

    Google Scholar 

  43. S.W. Wilson. ZCS: A Zeroth Level Classifier System. Evolutionary Computation, 2 (1): 1–18, 1994.

    Article  Google Scholar 

  44. S.W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3 (2): 149–175, 1995.

    Article  Google Scholar 

  45. D. Wolpert. Computational Intelligence, chapter Collective Intelligence, pages 245–261 IEEE Press, J. Wiley & Sons, 2003.

    Google Scholar 

  46. D.H. Wolpert, K. R. Wheeler, and K. Timer. Collective intelligence for control of distributed dynamical systems. Technical report, NASA Ames Research Centre, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hercog, L.M. (2004). Traffic Balance using Classifier Systems in an Agent based Simulation. In: Bull, L. (eds) Applications of Learning Classifier Systems. Studies in Fuzziness and Soft Computing, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39925-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39925-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53559-8

  • Online ISBN: 978-3-540-39925-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics