The Representation Levels of Music Information

  • Hugues Vinet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2771)

Abstract

The purpose of this article is to characterize the various kinds and specificities of music representations in technical systems. It shows that an appropriate division derived from existing applications relies in four main types, which are defined as the physical, signal, symbolic and knowledge levels. This fair simple and straightforward division provides a powerful grid for analyzing all kinds of musical applications, up to the ones resulting from the most recent research advances. Moreover, it is particularly adapted to exhibiting most current scientific issues in music technology as problems of conversion between various representation levels. The effectiveness of these concepts is then illustrated through an overview of existing applications functionalities, in particular from examples of recent research performed at IRCAM.

References

  1. 1.
    Assayag, G., Dubnov, S.: Universal Prediction Applied to Stylistic Music Generation. In: Assayag, G., Rodrigues, J.F., Feichtinger, H. (eds.) Mathematics and Music, EMS Diderot Forum 1999. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Assayag, G., Rueda, C., Laurson, M., Agon, C., Delerue, O.: Computer-Assisted Composition at IRCAM, From PatchWork to OpenMusic. Computer Music Journal 23(3), 59–72 (1999)Google Scholar
  3. 3.
    Cadoz, C.: Continuum énergétique du geste au son, simulation multisensorielle interactive d’objets physiques. In: Vinet, H., Delalande, F. (eds.) Interfaces homme-machine et creation musicale, pp. 165–181. Hermes Science, Paris (1999)Google Scholar
  4. 4.
    Canazza, S., Roda, A., Orio, N.: A parametric model of expressiveness in musical performance based on perceptual and acoustic analyses. In: Proc International Computer Music Conference, ICMA (1999)Google Scholar
  5. 5.
    de Cheveigné, A., Kawahara, H.: Multiple period estimation and pitch perception model. IEEE Speech Communication 27, 175–185 (1999)CrossRefGoogle Scholar
  6. 6.
    Hélie, T., Vergez, C., Lévine, J., Rodet, X.: Inversion of a physical model of a trumpet. In: IEEE CDC: Conference on Decision and Control, Phoenix Arizona (1999)Google Scholar
  7. 7.
    Hiller, L.: Music composed with computers, Heinz von Foerster col. J. Wiley & sons, New York (1969)Google Scholar
  8. 8.
    ISO/IEC 14496-1:2000. MPEG-4 Systems standard, 2nd Edn. Google Scholar
  9. 9.
    Jot, J.M., Warusfel, O.: A Real-Time Spatial Sound Processor for Music and Virtual Reality Applications. In: Proc. International Computer Music Conference, ICMA, pp. 294–295 (1995)Google Scholar
  10. 10.
    Mathews, M.V.: An acoustic compiler for music and psychoacoustic stimuli. Bell System Technical Journal 40, 677–694 (1961)MathSciNetGoogle Scholar
  11. 11.
    Martínez J. M., MPEG-7 Overview, ISO/IEC JTC1/SC29/WG11 N4980, http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
  12. 12.
    Meudic, B., St James, E.: Automatic Extraction of Approximate Repetitions in Polyphonic Midi Files Based on Perceptive Criteria. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 124–142. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Misdariis, N., Nicolas, F., Warusfel, O., Caussé, R.: Radiation control on a multiloudspeakers device. In: Proc. International Computer Music Conference, ICMA, pp. 306–309 (2001)Google Scholar
  14. 14.
    Orio, N., Lemouton, S., Schwarz, D.: Score Following: State of the Art and New Developments. In: Proc. International Conference on Musical Expression, (NIME-2003) pp. 36-41 (2003) Google Scholar
  15. 15.
    Orio N., Schwarz, D.: Alignment of Monophonic and Polyphonic Music to a Score. In: Proc. International Computer Music Conference, ICMA (2001) Google Scholar
  16. 16.
    Peeters, G., La Burthe, A., Rodet, X.: Toward Automatic Music Audio Summary Generation from Signal Analysis. In: Proc. International Conference on Music Information Retrieval, IRCAM, Paris (2002)Google Scholar
  17. 17.
    Peeters, G., Rodet, X.: Automatically selecting signal descriptors for Sound Classification. In: Proc. International Computer Music Conference, ICMA (2002)Google Scholar
  18. 18.
    Puckette, M.: FTS: A Real-Time Monitor for Multiprocessor Music Synthesis. Computer Music Journal 15(3), 58–68 (1991)CrossRefGoogle Scholar
  19. 19.
    Rossignol, S., Rodet, X., Soumagne, J., Colette, J.L., Depalle, P.: Feature extraction and temporal segmentation of acoustic signals. In: Proc. International Computer Music Conference, ICMA (1998)Google Scholar
  20. 20.
    Scheirer, E.D.: Tempo and Beat Analysis of Acoustic Musical Signals. J. Acoust. Soc. Am. 103(1), 588–601 (1998)CrossRefGoogle Scholar
  21. 21.
    Vergez, C., Bensoam, J., Misdariis, N., Caussé, R.: Modalys: Recent work and new axes of research for Modalys, sound synthesis program based in modal representation. In: Proc. 140th Meeting of the Acoustical Society of America (2000)Google Scholar
  22. 22.
    Vincent, E., Févotte, C., Gribonval, R., et al.: A tentative typology of audio source separation tasks. In: Proc. 4th Symposium on Independent Component Analysis and Blind Source Separation (ICA 2003), Nara, Japan (2003)Google Scholar
  23. 23.
    Vinet, H., Delalande, F.: Interfaces homme-machine et création musicale. Hermes Science, Paris (1999) Google Scholar
  24. 24.
    Vinet, H., Herrera, P., Pachet, F.: The CUIDADO Project. In: Proc. International Conference on Music Information Retrieval, IRCAM, Paris, pp. 197–203 (2002)Google Scholar
  25. 25.
    Wanderley, M., Battier, M.: Trends in Gestural Control of Music, CDROM book, IRCAM, Paris (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hugues Vinet
    • 1
  1. 1.IRCAMParisFrance

Personalised recommendations