Brain Shift Correction Based on a Boundary Element Biomechanical Model with Different Material Properties

  • Olivier Ecabert
  • Torsten Butz
  • Arya Nabavi
  • Jean-Philippe Thiran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)


Neuronavigation systems are usually subject to inaccuracy due to intraoperative changes like brain shift or tumor resection. In order to correct for these deformations a biomechanical model of the brain is proposed. Not only elastic tissues, but also fluids are modeled, since an important volume of the head contains cerebrospinal fluid, which does not behave like soft tissues. Unlike other approaches, we propose to solve the differential equations of the model by means of the boundary element method, which has the advantage of only considering the boundaries of the different biomechanically homogeneous regions. The size of the matrix to invert is therefore drastically reduced. Finally, our method is assessed with sequences of intraoperative MR images, showing better performances for the elastic/fluid model than for the purely elastic one.


Boundary Element Method Biomechanical Model Brain Shift Neuronavigation System White Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nabavi, A., Black, P.M., Gering, D.T., Westin, C.F., Metha, V., Pergolizzi, R.S., Ferrant, M., Warfield, S.K., Hata, N., Schwartz, R., Wells, W., Kikinis, R., Jolesz, F.A.: Serial intraoperative MR imaging of brain shift. Neurosurgery 48 (2001)Google Scholar
  2. 2.
    Bucholz, R.D., Yeh, D.D., Trobaugh, J., McDurmont, L.L., Sturm, C.D., Baumann, C., Henderson, J.M., Levy, A., Kessman, P.: The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Maurer, C.R., Hill, D.L.G., Martin, A.J., Liu, H., McCue, M., Rueckert, D., Lloret, D., Hall, W.A., Maxwell, R.E., Hawkes, D.J., Truwit, C.L.: Investigation of intraoperative brain deformation using a 1.5–T interventional MR system: Preliminary results. IEEE Transactions on Medical Imaging 17, 817–825 (1998)CrossRefGoogle Scholar
  4. 4.
    Nimsky, C., Ganslandt, O., Cerny, S., Hastreiter, P., Greiner, G., Fahlbusch, R.: Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47, 1070–1080 (2000)CrossRefGoogle Scholar
  5. 5.
    Hill, D.L., Maurer, C.R., Wang, M.Y., Maciunas, R.J., Barwise, J.A., Fitzpatrick, J.M.: Estimation of intraoperative brain surface movement. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Paulsen, K.D., Miga, M.I., Kennedy, F.E., Hoopes, P.J., Hartov, A., Roberts, D.W.: A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Transactions on Biomedical Engineering 46 (1999)Google Scholar
  7. 7.
    Škrinjar, O.M., Duncan, J.S.: Real time 3d brain shift compensation. In: MICCAI 1999. LNCS, vol. 1679, Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Miga, M., et al.: Modeling of retraction and resection for intraoperative unpdating of images during surgery. Neurosurgery 49 (2001)Google Scholar
  9. 9.
    Ferrant, M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K.: Registration of 3–D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transaction on Medical Imaging 20, 1384–1397 (2001)CrossRefGoogle Scholar
  10. 10.
    Škrinjar, O.M., Studholme, C., Nabavi, A., Duncan, J.S.: Steps toward a stereo camera-guided biomechanical model for brain shift compensation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 183–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Theory and Applications in Engineering. Springer, Berlin (1984)zbMATHGoogle Scholar
  12. 12.
    Hagemann, A., Rohr, K., Stiehl, H.: Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM. Medical Image Analysis 6, 375–388 (2002)CrossRefGoogle Scholar
  13. 13.
    Fung, Y.: A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  14. 14.
    Power, H., Wrobel, L.: Boundary Integral Methods in Fluid Mechanics. Computational Mechanics Computation, Southampton, U.K (1995)Google Scholar
  15. 15.
    Maes, F., Colligno, A., Vandermeulen, D., Marchal, G., Sueten, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  16. 16.
    Ecabert, O., Thiran, J.P.: Variational image segmentation by unifying region and boundary information. In: ICPR, Quebec City, Canada, pp. 885–888 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Olivier Ecabert
    • 1
    • 2
  • Torsten Butz
    • 3
  • Arya Nabavi
    • 4
  • Jean-Philippe Thiran
    • 3
  1. 1.Darmstadt University of TechnologyDarmstadtGermany
  2. 2.Philips ResearchAachenGermany
  3. 3.Swiss Federal Institute of Technology (EPFL), Signal Processing InstituteLausanneSwitzerland
  4. 4.Department of NeurosurgeryUniversity of KielKielGermany

Personalised recommendations