Soft Tissue Simulation Based on Measured Data

  • M. Hauth
  • J. Gross
  • W. Straßer
  • G. F. Buess
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)


Using methods from the computational sciences to improve the quality of health care is an important part of current medical progress. A particulary complex field is surgery simulation, where the fidelity of the systems is still unsatisfactory. We present a finite element system based on a sophisticated material law, better suited for dynamical computations than the standard approaches. To balance computational cost, a hierarchical basis is employed, allowing detail where needed. For time integration the use of a stabilized Runge-Kutta method is proposed.


Mechanical Quality Surgery Simulation Prony Series Memory Parameter Hierarchical Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90(1), 1–18 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atanackovic, T.M., Guran, A.: Theory of Elasticity for Scientists and Engineers. Birkhäuser, Boston (2000)Google Scholar
  3. 3.
    Bank, R.E.: Hierarchical bases and the finite element method. Acta Numerica 5, 1–43 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Cohen, M. (ed.) SIGGRAPH 1998 Conference Proceedings, July 1998, pp. 43–54 (1998)Google Scholar
  5. 5.
    Bro-Nielsen, M.: Finite Element Modeling in Medical VR. Journal of the IEEE 86(3), 490–503 (1998)CrossRefGoogle Scholar
  6. 6.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: Interactive skeletondriven dynamic deformations. In: SIGGRAPH 2002, ACM SIGGRAPH, pp. 586–593 (2002)Google Scholar
  7. 7.
    Debunne, G., Desbrun, M., Cani, M.-P., Barr, A.H.: Dynamic Real-Time Deformations using Space and Time Adaptive Sampling. In: SIGGRAPH 2001, pp. 31–36 (2001)Google Scholar
  8. 8.
    Frisken-Gibson, S.F.: Using Linked Volumes to Model Object Collisions, Deformation, Cutting, Carving, and Joining. IEEE TVCG 5(4), 333–348 (1999)Google Scholar
  9. 9.
    Fung, Y.C.: Biomechanics: Mechanical properties of living tissues. Springer, New York (1993)Google Scholar
  10. 10.
    Groß, J., Hauth, M., Etzmuß, O., Buess, G.F.: Modelling Viscoelasticity in Soft Tissues. In: Int. Workshop on Deformable Modelling and Soft Tissue Simulation, November 2001, Elsevier, Amsterdam (2001)Google Scholar
  11. 11.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)zbMATHGoogle Scholar
  12. 12.
    Hauth, M., Etzmuß, O.: A High Performance Solver for the Animation of Deformable Objects using Advanced Numerical Methods. In: Proc. Eurographics, Manchester, UK, pp. 137–151 (2001)Google Scholar
  13. 13.
    Hauth, M., Gross, J., Straßer, W.: Interactive physically based solid dynamics. In: Proc. SIGGRAPH Symposium on Computer Animation 2003, ACM Press, New York (2003)Google Scholar
  14. 14.
    Kalanovic, D., Ottensmeyer, M.P., Groß, J., Dawson, S.L.: Independent testing of soft tissue visco-elasticity using indentation and rotary shear deformations. In: Proc. MMVR (2003)Google Scholar
  15. 15.
    Kjartansson, E.: Constant-Q, Wave propagation and attenuation. Journal of Geophysical Research 85, 4737–4748 (1979)CrossRefGoogle Scholar
  16. 16.
    Maaß, H., Kühnapfel, U.: Noninvasive measurement of elastic properties of living tissue. EMBEC 1999 37, 1460–1461 (1999)Google Scholar
  17. 17.
    Nava, A., Mazza, E., Kleinermann, F., Avis, N., McClure, J.: Determination of the mechanical properties of soft human tissues through aspiration experiments. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 222–229. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Picinbono, G., Delingette, H., Ayache, N.: Real-Time Large Displacement Elasticity for Surgery Simulation: Non-Linear Tensor-Mass Model. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 643–652. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: ICRA 2001(May 2001)Google Scholar
  20. 20.
    Sederberg, T.W., Parry, S.R.: Free-Form Deformation of Solid Geometric Models. In: SIGGRAPH 1986 Proceedings, August 1986, vol. 20(4), pp. 151–160 (1986)Google Scholar
  21. 21.
    Sinkus, R., Lorentzen, J., Schrader, D., Lorenzen, M., Dargatz, M., Holz, D.: High-resolution tensor MR elastography for breast tumour detection. Physics in Medicine and Biology 45, 1649–1664 (2000)CrossRefGoogle Scholar
  22. 22.
    Szekely, G., Brechbühler, C., Hutter, R., Rhomberg, A.: Modelling of soft tissue deformation for laparoscopic surgery simulation. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, p. 550. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Terzopoulos, D., Fleischer, K.: Deformable Models. The Visual Computer 4, 306–331 (1988)CrossRefGoogle Scholar
  24. 24.
    Van Gelder, A.: Approximate Simulation of Elastic Membranes by Triangle Meshes. Journal of graphics tools 3, 21–42 (1998)Google Scholar
  25. 25.
    Yserentant, H.: Hierarchical bases. In: ICIAM91, pp. 281–290. SIAM, Philadelphia (1992)Google Scholar
  26. 26.
    Zienkiewicz, O., Taylor, R.: The finite element method, vol. 1-3. Butterworth-Heinemann, Oxford (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Hauth
    • 1
  • J. Gross
    • 1
    • 2
  • W. Straßer
    • 1
  • G. F. Buess
    • 2
  1. 1.WSI/GRISUniversity of Tübingen 
  2. 2.MIC, Department of General SurgeryUniversity Hospital Tübingen 

Personalised recommendations