Measurement-Based Deep Venous Thrombosis Screening System

  • Julian Guerrero
  • S. E. Salcudean
  • James A. McEwen
  • Bassam A. Masri
  • Savvas Nicolaou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)


An experimental system and interface that indicate the likelihood of deep venous thrombosis using objective measures was developed, based on ultrasound image processing using a modified Star-Kalman algorithm and a sensorized ultrasound probe. Force, location and image data is used to assess a vessel segment for compression. A user interface displays the results using a 3-D representation. A tissue phantom was developed for testing and validation. Initial results with this phantom and healthy volunteers are presented.


Deep Venous Thrombosis Ultrasound Image Vessel Segment Vein Segment Compression Ultrasound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abolmaesumi, P., Salcudean, S.E., Zhu, W.H., Sirouspour, M.R., DiMaio, S.P.: Image-Guided Control of a Robot for Medical Ultrasound. IEEE Transactions on Robotics and Automation 18 (2002)Google Scholar
  2. 2.
    Chu, K.C., Rutt, B.K.: Polyvinyl Alcohol Cryogel: An Ideal Phantom Material for MR Studies of Arterial Flow and Elasticity. Magnetic Resonance in Medicine 37, 314–319 (1997)CrossRefGoogle Scholar
  3. 3.
    Emelianov, S.Y., Chen, X., O’Donnell, M., Knipp, B., Myers, D., Wakefield, T.W., Rubin, J.M.: Triplex Ultrasound: Elasticity Imaging to Age Deep Venous Thrombosis. Ultrasound in Medicine and Biology 28(6), 757–767 (2002)CrossRefGoogle Scholar
  4. 4.
    Fenster, A., Downey, D.B.: 3-D Ultrasound Imaging: A Review. IEEE Engineering in Medicine and Biology, 41–51 (November/December 1996)Google Scholar
  5. 5.
    Frazee, B.W., Snoey, E.R., Levitt, A.: Emergency Department Compression Ultrasound To Diagnose Proximal Deep Vein Thrombosis. The Journal of Emergency Medicine 20(2), 107–111 (2001)CrossRefGoogle Scholar
  6. 6.
    Janssen, M.C.H., Wollersheim, H., Novakova, I.R.O., Heystraten, F.M.J., van Asten, W.N.J.C., Thien, T.: Diagnosis Of Deep Vein Thrombosis, An Overview. Netherlands Journal of Medicine 48, 109–121 (1996)CrossRefGoogle Scholar
  7. 7.
    Jensen, J.A.: Field: A Program for Simulating Ultrasound Systems. Medical and Biological Engineering and Computing 34, 351–353 (1996); Supplement 1, Part 1CrossRefGoogle Scholar
  8. 8.
    Perone, N., Bounameaux, H., Perrier, A.: Comparison Of Four Strategies For Diagnosing Deep Vein Thrombosis: A Cost-Effectiveness Analysis. The American Journal of Medicine 110(1), 33–40 (2001)CrossRefGoogle Scholar
  9. 9.
    Rickey, D.W., Picot, P.A., Christopher, D.A., Fenster, A.: A Wall-less Vessel Phantom for Doppler Ultrasound Studies. Ultrasound in Medicine and Biology 21(9), 1163–1176 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Julian Guerrero
    • 1
  • S. E. Salcudean
    • 1
  • James A. McEwen
    • 1
    • 2
  • Bassam A. Masri
    • 2
  • Savvas Nicolaou
    • 3
  1. 1.Department of Electrical & Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of OrthopaedicsUniversity of British ColumbiaVancouverCanada
  3. 3.Department of RadiologyVancouver Hospital & Health Sciences CentreVancouverCanada

Personalised recommendations