Skip to main content

On the Recognition of General Partition Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2880))

Included in the following conference series:

Abstract

A graph G is a general partition graph if there is some set S and an assignment of non-empty subsets S x  ⊆ S to the vertices of G such that two vertices x and y are adjacent if and only if S x  ∩ S y  ≠ Ø and for every maximal independent set M the set {S m | m ∈ M} is a partition of S. For every minor closed family of graphs there exists a polynomial time algorithm that checks if an element of the family is a general partition graph.

The triangle condition says that for every maximal independent set M and for every edge (x,y) with x,yM there is a vertex m ∈ M such that {x,y,m} induces a triangle in G. It is known that the triangle condition is necessary for a graph to be a general partition graph (but in general not sufficient). We show that for AT-free graphs this condition is also sufficient and this leads to an efficient algorithm that demonstrates whether or not an AT-free graph is a general partition graph.

We show that the triangle condition can be checked in polynomial time for planar graphs and circle graphs. It is unknown if the triangle condition is also a sufficient condition for planar graphs to be a general partition graph. For circle graphs we show that the triangle condition is not sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbeek, C., DeTemple, D., McAvaney, K., Robertson, J.: When are chordal graphs also partition graphs? Australas. J. Combin. 16, 285–293 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes–A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)

    Google Scholar 

  3. Broersma, H.J., Kloks, T., Kratsch, D., Müller, H.: Independent sets in AT-free graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 760–770. Springer, Heidelberg (1997)

    Google Scholar 

  4. Bron, S., Kerbosch, J.: Algorithm 457–Finding all cliques of an undirected graph. Comm. of ACM 16, 575 (1973)

    Article  MATH  Google Scholar 

  5. Chvátal, V., Slater, P.J.: A note on well-covered graphs. In: Gimbel, J., Kennedy, J.W., Quintas, L.V. (eds.) Quo Vadis, Graph Theory? Annals of Discrete Mathematics, vol. 55, pp. 179–182 (1993)

    Google Scholar 

  6. Corneil, D.G., Olariu, S., Stewart, L.K.: Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. DeTemple, D.W., Dineen, M.J., Robertson, J.M., McAvaney, K.L.: Recent examples in the theory of partition graphs. Discrete Mathematics 113, 255–258 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. DeTemple, D., Harary, F., Robertson, J.: Partition graphs. Soochow J. Math. 13, 121–129 (1987)

    MATH  MathSciNet  Google Scholar 

  9. DeTemple, D.W., Robertson, J.M.: Constructions and the realization problem for partition graphs. J. Combin. Inform. System Sci. 13, 50–63 (1988)

    MATH  MathSciNet  Google Scholar 

  10. DeTemple, D., Robertson, J., Harary, F.: Existential partition graphs. J. Combin. Inform. System Sci. 9, 193–196 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 30, 261–273 (1973)

    Article  MathSciNet  Google Scholar 

  12. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  13. Kloks, T., Kratsch, D., Lee, C.M., Liu, J.: Improved bottleneck domination algorithms (2003) (manuscript)

    Google Scholar 

  14. Lekkerkerker, C., Boland, D.: Representation of finite graphs by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MATH  MathSciNet  Google Scholar 

  15. McAvaney, K., Robertson, J., DeTemple, D.: A characterization and hereditary properties for partition graphs. Discrete Mathematics 113, 131–142 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Naji, W.: Reconnaissance des graphes de cordes. Discrete Mathematics 54, 329–337 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nebeský, L.: On partition graphs and generalizations of line graphs. Časopis Pěst. Mat. 102, 203–205 (1977)

    MATH  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors–A Survey. In: Anderson, I. (ed.) Surveys in Combinatorics, pp. 153–171. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  19. Spinrad, J.P.: Recognition of circle graphs. J. Algorithms 16, 264–282 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tsukiyama, S.: Algorithms for generating all maximal independent sets. Electronics & Communications 59, 1–8 (1976)

    Google Scholar 

  21. Yen, W.C.-K.: Bottleneck domination and bottleneck independent domination on graphs. Journal of Information Science and Engineering 18, 311–331 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloks, T., Lee, CM., Liu, J., Müller, H. (2003). On the Recognition of General Partition Graphs. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39890-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20452-7

  • Online ISBN: 978-3-540-39890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics