Skip to main content

Greedy Edge-Disjoint Paths in Complete Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2880))

Abstract

The maximum edge-disjoint paths problem (MEDP) is one of the most classical NP-hard problems. We study the approximation ratio of a simple and practical approximation algorithm, the shortest-path-first greedy algorithm (SGA), for MEDP in complete graphs. Previously, it was known that this ratio is at most 54. Adapting results by Kolman and Scheideler [Proceedings of SODA, 2002, pp. 184–193], we show that SGA achieves approximation ratio 8F+1 for MEDP in undirected graphs with flow number F and, therefore, has approximation ratio at most 9 in complete graphs. Furthermore, we construct a family of instances that shows that SGA cannot be better than a 3-approximation algorithm. Our upper and lower bounds hold also for the bounded-length greedy algorithm, a simple on-line algorithm for MEDP.

This work was supported by the Berlin-Zürich Joint Graduate Program “Combinatorics, Geometry, and Computation” (CGC), financed by ETH Zürich and the German Science Foundation (DFG), by the Swiss National Science Foundation under Contract No. 2100-63563.00 (AAPCN), and by EU Thematic Network APPOL II, IST-2001-32007, with funding by the Swiss Federal Office for Education and Science (BBW). A longer version of this paper is available as technical report [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmi, P., Erlebach, T., Okamoto, Y.: Greedy edge-disjoint paths in complete graphs. TIK-Report 155, Computer Engineering and Networks Laboratory (TIK), ETH Zürich (February 2003)

    Google Scholar 

  2. Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 628–637 (2003)

    Google Scholar 

  3. Erlebach, T.: Approximation algorithms and complexity results for path problems in trees of rings. TIK-Report 109, Computer Engineering and Networks Laboratory (TIK), ETH Zürich (June 2001)

    Google Scholar 

  4. Erlebach, T., Vukadinović, D.: New results for path problems in generalized stars, complete graphs, and brick wall graphs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 483–494. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  6. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Nearoptimal hardness results and approximation algorithms for edge-disjoint paths and related problems. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 19–28 (1999)

    Google Scholar 

  8. Kleinberg, J.M.: Approximation algorithms for disjoint paths problems. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1996)

    Google Scholar 

  9. Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using greedy algorithms and packing integer programs. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 153–168. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 184–193 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carmi, P., Erlebach, T., Okamoto, Y. (2003). Greedy Edge-Disjoint Paths in Complete Graphs. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39890-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20452-7

  • Online ISBN: 978-3-540-39890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics