Skip to main content

Learning Essential Graph Markov Models from Data

  • Chapter
Advances in Bayesian Networks

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 146))

Abstract

In a model selection procedure where many models are to be compared, computational efficiency is critical. For acyclic digraph (ADG) Markov models (aka DAG models or Bayesian networks), each ADG Markov equivalence class can be represented by a unique chain graph, called an essential graph (EG). This parsimonious representation might be used to facilitate selection among ADG models. Because EGs combine features of decomposable graphs and ADGs, a scoring metric can be developed for EGs with categorical (multinomial) data. This metric may permit the characterization of local computations directly for EGs, which in turn would yield a learning procedure that does not require transformation to representative ADGs at each step for scoring purposes, nor is the scoring metric constrained by Markov equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, S., Madigan, D., and Perlman, M. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25:505–541.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, S., Madigan, D., and Perlman, M. (2001). Alternative Markov properties for chain graphs. Scandinavian Journal of Statistics, 28:33–85.

    Article  MathSciNet  MATH  Google Scholar 

  3. Auvray, V. and Wehenkel L. (2002). On the construction of the inclusion boundary neighborhood for Markov equivalence classes of Bayesian network structures. In Proc. of the Eighteenth Conf. on Uncertainty in Art. Int. Morgan Kaufmann.

    Google Scholar 

  4. Castelo, R. and Kočka, T. (2003). On an inclusion driven learning of Bayesian networks. Journal of Machine Learning Research, 4:527–574.

    Google Scholar 

  5. Castillo, E., Hadi, A., and Solares, C. (1997) . Learning and updating of uncertainty in Dirichlet models. Machine Learning, 26:43–63.

    Article  MATH  Google Scholar 

  6. Chickering, D. (1996) . Learning equivalence classes of Bayesian network structures. In Proc. of the Twelfth Conf. on Uncertainty in Art. Int., pg. 150–157. Morgan Kaufmann.

    Google Scholar 

  7. Chickering, D. (2002a) . Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445–498.

    MathSciNet  MATH  Google Scholar 

  8. Chickering, D. (2002b). Optimal Structure Identification with Greedy Search. Journal of Machine Learning Research, 3:507–554

    MathSciNet  Google Scholar 

  9. Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999) . Probabilistic Networks and Expert Systems. Springer-Verlag, New York.

    MATH  Google Scholar 

  10. Dawid, P. and Lauritzen, S. (1993) . Hyper-Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21(3):1272–1317.

    Article  MathSciNet  MATH  Google Scholar 

  11. DeGroot, M. H. (1970) . Optimal Statistical Decisions. McGraw-Hill.

    MATH  Google Scholar 

  12. Frydenberg, M. (1990) . The chain graph Markov property. Scandinavian Journal of Statistics, 17:333–353.

    MathSciNet  MATH  Google Scholar 

  13. Geiger, D. and Heckerman, D. (1998). Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Tech. Rep. MSR-TR-98–67, Oct. 1998, Microsoft Research.

    Google Scholar 

  14. Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:194–243.

    Google Scholar 

  15. Kočka, T., Bouckaert, R., and Student, M. (2001). On characterizing inclusion of Bayesian networks. In Proc. of the Seventeenth Conf. on Uncertainty in Art. Int., pg. 261–268. Morgan Kaufmann.

    Google Scholar 

  16. Kočka, T. and Castelo, R. (2001) . Improved learning of Bayesian networks. In Proc. of the Seventeenth Conf. on Uncertainty in Art. Int., pg. 269–276. Morgan Kaufmann.

    Google Scholar 

  17. Lauritzen, S. (1996) . Graphical Models. Oxford University Press, Oxford.

    Google Scholar 

  18. Meek, C. (1997). Graphical models, selecting causal and statistical models. PhD Thesis, Carnegie Mellon University.

    Google Scholar 

  19. Perlman, M. (2001). Graphical model search via essential graphs. In Algebraic Methods in Statistics and Probability, V. 287, American Math. Soc, Providence, Rhode Island.

    Google Scholar 

  20. Roverato, A. and Consonni, G. (2001) . Compatible Prior Distributions for DAG models. Tech. Rep. 134, Sept. 2001, University of Pavia.

    Google Scholar 

  21. Spiegelhalter, D. and Lauritzen, S. (1990) . Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579–605.

    Article  MathSciNet  MATH  Google Scholar 

  22. Verma, T. and Pearl, J. (1990) . Equivalence and synthesis of causal models. In Proc. of the Sixth Conf. on Uncertainty in Art. Int., pg. 255–268. Morgan Kaufmann.

    Google Scholar 

  23. Wilks, S.S. (1962). Mathematical Statistics. Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castelo, R., Perlman, M.D. (2004). Learning Essential Graph Markov Models from Data. In: Gámez, J.A., Moral, S., Salmerón, A. (eds) Advances in Bayesian Networks. Studies in Fuzziness and Soft Computing, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39879-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39879-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05885-1

  • Online ISBN: 978-3-540-39879-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics