Timed Verification with μCRL

  • Stefan Blom
  • Natalia Ioustinova
  • Natalia Sidorova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)


μCRL is a process algebraic language for specification and verification of distributed systems. μCRL allows to describe temporal properties of distributed systems but it has no explicit reference to time. In this work we propose a manner of introducing discrete time without extending the language. The semantics of discrete time we use makes it possible to reduce the time progress problem to the diagnostics of “no action is enabled” situations. The synchronous nature of the language facilitates the task. We show some experimental verification results obtained on a timed communication protocol.


modelling verification discrete time μCRL model checking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Computing 8(2), 188–208 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing: Real Time and Discrete Time. In: Bergstra et al. [4]Google Scholar
  4. 4.
    Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  5. 5.
    Blom, S.C.C., Fokkink, W.J., Groote, J.F., van Langevelde, I.A., Lisser, B., van de Pol, J.C.: μCRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bošnački, D., Dams, D.: Integrating real time into Spin: A prototype implementation. In: Budkowski, S., Cavalli, A., Najm, E. (eds.) Proceedings of Formal Description Techniques and Protocol Specification, Testing, and Verification. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  7. 7.
    Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using dense and disrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Groote, J.F., Reniers, M.: Algebraic process verification. In: Bergstra et al. [4], pp. 1151–1208Google Scholar
  9. 9.
    Groote, J.F., van Wamel, J.J.: Analysis of three hybrid systems in timed μCRL. Science of Computer Programming 39, 215–247 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Groote, J.F.: The syntax and semantics of timed μCRL. SEN R9709, CWI, Amsterdam (1997)Google Scholar
  11. 11.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-free mu-calculus. In: Proceedings of the 5th International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2000 (2000)Google Scholar
  13. 13.
    Nicola, R.D., Vaandrager, F.: Three logics for branching bisimulation. Journal of the ACM(JACM) 42(2), 458–487 (1996)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Tanenbaum, A.S.: Computer Networks. Prentice Hall International, Inc., Englewood Cliffs (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stefan Blom
    • 1
  • Natalia Ioustinova
    • 1
  • Natalia Sidorova
    • 2
  1. 1.Department of Software EngineeringCWIAmsterdamThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations