Skip to main content

Efficient SAT Engines for Concise Logics: Accelerating Proof Search for Zero-One Linear Constraint Systems

  • Conference paper
Book cover Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2850))

Abstract.

We investigate the problem of generalizing acceleration techniques as found in recent satisfiability engines for conjunctive normal forms (CNFs) to linear constraint systems over the Booleans. The rationale behind this research is that rewriting the propositional formulae occurring in e.g. bounded model checking (BMC) [5] to CNF requires a blowup in either the formula size (worst-case exponential) or in the number of propositional variables (linear, thus yielding a worst-case exponential blow-up of the search space). We demonstrate that acceleration techniques like observation lists and lazy clause evaluation [14] as well as the more traditional non-chronological backtracking and learning techniques generalize smoothly to Davis-Putnam-like resolution procedures for the very concise propositional logic of linear constraint systems over the Booleans. Despite the more expressive input language, the performance of our prototype implementation comes surprisingly close to that of state-of-the-art CNF-SAT engines like ZChaff [14]. First experiments with bounded model-construction problems show that the overhead in the satisfiability engine that can be attributed to the richer input language is often amortized by the conciseness gained in the propositional encoding of the BMC problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: An update. In: Proc. ACM/IEEE Intl. Conf. Comp.-Aided Design (ICCAD), November 2002, pp. 450–457 (2002)

    Google Scholar 

  2. Baptista, L., Lynce, I., Marques-Silva, J.: Complete search restart strategies for satisfiability. In: Proc. of the IJCAI 2001 Workshop on Stochastic Search Algorithms (IJCAI-SSA) (August 2001)

    Google Scholar 

  3. Baptista, L., Marques-Silva, J.P.: Using randomization and learning to solve hard real-world instances of satisfiability. In: Proc. of the 6th International Conference on Principles and Practice of Constraint Programming (2000)

    Google Scholar 

  4. Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudoboolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1995)

    Google Scholar 

  5. Biere, A., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: Proc. of the 40th Design Automation Conference (DAC 2003), Anaheim (California, USA), June 2003, pp. 830–835. ACM, New York (2003)

    Chapter  Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fränzle, M.: Take it NP-easy: Bounded model construction for duration calculus. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 245–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Groote, J.F., Warners, J.P.: The propositional formula checker HeerHugo. Technical report SEN-R9905, CWI (1999)

    Google Scholar 

  10. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts. McGraw-Hill Inc., New York (1998)

    Google Scholar 

  11. Lochmann, R.: Boosting the verification power of the statemate verification engine: on the perfomance benefits of integrating ProverCL (2003) (in preparation)

    Google Scholar 

  12. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001) (June 2001)

    Google Scholar 

  15. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier Science, B.V. (1999)

    Google Scholar 

  16. Owen, J.H., Mehrotra, S.: On the value of binary expansions for general mixedinteger linear programs. Operations Research 50(5), 810–819 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Slisenko, A. (ed.) Studies in Constructive Mathematics and Mathematical Logics (1968)

    Google Scholar 

  18. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing Letters 68(2), 63–69 (1998)

    Article  MathSciNet  Google Scholar 

  19. Whittemore, J., Kim, J., Sakallah, K.: SATIRE: A new incremental satisfiability engine. In: Proc. of the 38th Design Automation Conference (DAC 2001), Las Vegas (Nevada, USA), June 2001, pp. 542–545 (2001)

    Google Scholar 

  20. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

    Google Scholar 

  21. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: Proc. of the International Symposium on Artificial Intelligence and Mathematics (AIMATH 1996), Fort Lauderdale (Florida USA), pp. 166–169 (1996)

    Google Scholar 

  22. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proc. of the International Conference on Computer-Aided Design (ICCAD 2001), November 2001, pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fränzle, M., Herde, C. (2003). Efficient SAT Engines for Concise Logics: Accelerating Proof Search for Zero-One Linear Constraint Systems. In: Vardi, M.Y., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2003. Lecture Notes in Computer Science(), vol 2850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39813-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39813-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20101-4

  • Online ISBN: 978-3-540-39813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics