Convergence Testing in Term-Level Bounded Model Checking

  • Randal E. Bryant
  • Shuvendu K. Lahiri
  • Sanjit A. Seshia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2860)


We consider the problem of bounded model checking of systems expressed in a decidable fragment of first-order logic. While model checking is not guaranteed to terminate for an arbitrary system, it converges for many practical examples, including pipelined processors. We give a new formal definition of convergence that generalizes previously stated criteria. We also give a sound semi-decision procedure to check this criterion based on a translation to quantified separation logic. Preliminary results on simple pipeline processor models are presented.


  1. 1.
    Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland, Amsterdam (1954)MATHGoogle Scholar
  2. 2.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)MATHGoogle Scholar
  3. 3.
    Bryant, R.E., German, S., Velev, M.N.: Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic. ACM Transactions on Computational Logic 2(1), 1–41 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Convergence testing in term-level bounded model checking. Technical Report CMU-CS-03-156, Carnegie Mellon University (2003)Google Scholar
  6. 6.
    Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential circuit verification using symbolic model checking. In: Design Automation Conference (1991)Google Scholar
  8. 8.
    Burch, J.R., Dill, D.L.: Automated verification of pipelined microprocessor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Corella, F., Zhou, Z., Song, X., Langevin, M., Cerny, E.: Multiway decision graphs for automated hardware verification. Formal Methods in System Design 10(1), 7–46 (1997)CrossRefGoogle Scholar
  10. 10.
    Cyrluk, D., Narendran, P.: Ground temporal logic: a logic for hardware verification. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 247–259. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Graf, S., Saidi, H.: Construction of abstract state graphs using PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Hojati, R., Isles, A., Kirkpatrick, D., Brayton, R.K.: Verification using finite instantiations and uninterpreted functions. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 218–232. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Isles, A.J., Hojati, R., Brayton, R.K.: Computing reachable control states of systems modeled with uninterpreted functions and infinite memory. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 256–267. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Lahiri, S.K., Bryant, R.E.: Deductive verification of advanced out-of-order microprocessors. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 341–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed automata using Boolean methods. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. In: 38th Design Automation Conference, DAC 2001 (June 2001)Google Scholar
  17. 17.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Randal E. Bryant
    • 1
  • Shuvendu K. Lahiri
    • 1
  • Sanjit A. Seshia
    • 1
  1. 1.School of Computer Science & Electrical and Computer Engineering DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations