Skip to main content

Large Scale Structures of Turbulent Shear Flow via DNS

  • Conference paper
High Performance Computing (ISHPC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2858))

Included in the following conference series:

Abstract.

A direct numerical simulation (DNS) of turbulent channel flow has been carried out to understand the effects of Reynolds number. In this study, the Reynolds number for channel flow based on a friction velocity and channel half width was set to be constant; Re τ = 1100. The number of computational grids used in this study was 1024 x 1024 x 768 in the x-, y- and z -directions, respectively. The turbulent quantities such as the mean flow, turbulent stresses and the turbulent statistics were obtained via present DNS. Large scale turbulence structures visualized by paralleled AVS/Express appear in whole region. The structures are merged by small scales structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133 (1987)

    Article  MATH  Google Scholar 

  2. Miyamoto, T., Tanahashi, M., Miyauchi, T.: Scaling law of fine scale eddies in high Reynolds number turbulent channel flow. In: Proc. of 16 th Computational Fluid Dynamics Conf., in Tokyo, E12-2 (2002)

    Google Scholar 

  3. Laufer, J.: The structure of turbulence in fully developed pipe flow, NACA report 1174 (1954)

    Google Scholar 

  4. Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.T.M.: Fully developed turbulent pipe flow: comparison between direct simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)

    Article  Google Scholar 

  5. Satake, S., Kunugi, T.: Direct numerical simulation of turbulent pipe flow. Bulletin JSME 64, 65–70 (1998) (in Japanense)

    Google Scholar 

  6. Sakate, S., Kunugi, T.: Direct numerical simulation of an impinging jet into parallel disks. Int. J. Numerical Methods for Heat and Fluid Flow 8, 768–780 (1998)

    Article  Google Scholar 

  7. Satake, S., Kunugi, T., Himeno, R.: High reynolds number computation for turbulent heat transfer in a pipe flow. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.) ISHPC 2000. LNCS, vol. 1940, pp. 514–523. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Iwamoto, K., Suzuki, Y., and Kasagi, N., 2002, Database of fully developed channel flow,THTLAB Internal Report, N0. ILR-0201, see http://www.thtlab.t.utokyo.ac.jp

  9. Dukowicz, J.K., Dvinsky, A.S.: A. S. Approximate factorisation as a high order splitting for the implicit incompressible flow equations. J. Comp.,Phys. 102(2), 336–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Spalart, P.R., Moser, R.D., Rogers, M.: Spectral methods for the Navier- Stokes equations with one infinite and two periodic directions. J. Comp. Phys. 96, 297–324 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Satake, Si., Kunugi, T., Takase, K., Ose, Y., Naito, N. (2003). Large Scale Structures of Turbulent Shear Flow via DNS. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds) High Performance Computing. ISHPC 2003. Lecture Notes in Computer Science, vol 2858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39707-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39707-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20359-9

  • Online ISBN: 978-3-540-39707-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics