Advertisement

Semi-automatic Image Registration of MRI to CT Data of the Prostate Using Gold Markers as Fiducials

  • Jorn A. van Dalen
  • H. J. Huisman
  • A. Welmers
  • J. O. Barentsz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2717)

Abstract

An accurate image registration of MRI to CT data is of great benefit for prostate treatment planning in image-guided radiotherapy. However, prostate motion with respect to surrounding structures and absence of clear structures in and of the prostate in the CT image, complicate this registration. Therefore, we developed a semi-automatic method for a robust, accurate and time efficient image registration of MRI to CT data of the prostate, making use of gold markers, that are inserted in the prostate, as fiducials. The gold markers, as they appear on both images, are segmented using a thresholding technique. The registration deals with a rigid transformation and is based on the iterative closest point algorithm that acts onto the surfaces of the segmented gold markers. The method is clinically tested and uncertainties of 0.4-0.5 mm and 0.7-1.4 mm are obtained at the centre and at the rim of the prostate, respectively.

Keywords

Compute Tomography Image Image Registration Intensity Modulate Radiation Therapy Magnetic Resonance Imaging Image Compute Tomography Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maintz, J.B.A., Viergever, M.A.: Medical Image Analysis  2(1), 1 (1998)Google Scholar
  2. 2.
    Hill, D.L.G., et al.: Phys. Med. Biol. 46, 1 (2001)CrossRefGoogle Scholar
  3. 3.
    Burman, C., et al.: Int. J. Radiat. Oncol. Biol. Phys 39(4), 863 (1997)CrossRefGoogle Scholar
  4. 4.
    Zelefsky, M.J., et al.: Radiother. Oncol. 55(3), 241 (2000)CrossRefGoogle Scholar
  5. 5.
    Engelbrecht, M., et al.: Dynamic MR imaging of prostate cancer: dynamic features for cancer detection (2002) (submitted to Radiology)Google Scholar
  6. 6.
    van der Graaf, M., et al.: MAGMA 10(1), 153 (2000)CrossRefGoogle Scholar
  7. 7.
    Kaji, Y., et al.: Radiology 206(3), 785 (1998)Google Scholar
  8. 8.
    Scheidler, J.: Radiology 213(2), 473 (1999)Google Scholar
  9. 9.
    Kurhanewicz, J.: Radiol. Clin. North. Am. 38(1), 115 (2000)CrossRefGoogle Scholar
  10. 10.
    Mueller-Lisse, U., et al.: Radiology 221(2), 380 (2001)CrossRefGoogle Scholar
  11. 11.
    van Dorsten, F., et al.: Radiology 221(P), 585 (2001)Google Scholar
  12. 12.
    Stroom, J.C., et al.: Int J. Radiat. Oncol. Biol. Phys. 43(4), 905 (1999)CrossRefGoogle Scholar
  13. 13.
    van Herk, M., et al.: Int J. Radiat. Oncol. Biol. Phys. 52(5), 1407 (2002)CrossRefGoogle Scholar
  14. 14.
    van Lin, E.N., et al.: Int. J. Radiat. Oncol. Biol. Phys. 50(2), 569 (2001)CrossRefGoogle Scholar
  15. 15.
    Welmers, A., et al.: 3D Image Fusion of CT with Dynamic Contrast Enhanced MRI and MR Spectroscopy of the Prostate Using Gold Markers as Fiducials. Radiological Society of North America (RSNA) Abstracts, Suppl. to Radiology 225(P), 350 (2002) (Presented at RSNA 2002)Google Scholar
  16. 16.
    Partridge, M., et al.: Phys. Med. Biol. 45(12), 183 (2000)CrossRefGoogle Scholar
  17. 17.
    van Herk, M., et al.: Int. J. Radiat. Oncol. Biol. Phys. 33(5), 1311 (1995)CrossRefGoogle Scholar
  18. 18.
    Zelefsky, M.J., et al.: Radiother. Oncol. 50(2), 225 (1999)CrossRefGoogle Scholar
  19. 19.
    Alasti, H., et al.: Int. J. Radiat. Oncol. Biol. Phys. 49(3), 869 (2001)CrossRefGoogle Scholar
  20. 20.
    Parker, C.C., et al.: Radiother. Oncol. 66(2), 217 (2003)CrossRefGoogle Scholar
  21. 21.
    Balter, J.M.: Int. J. Radiot. Oncol. Biol. Phys. 31(1), 113 (1995)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    The Visualization Toolkit User’s Guide, ISBN 1-930934-08-4, published by Kitware; The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics, 3rd edition, ISBN 1-930934-07-6, published by Kitware, http://public.kitware.com/VTK/
  24. 24.
    Besl, P.J., McKay, N.D.: IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239 (1992)CrossRefGoogle Scholar
  25. 25.
    Chen, C., Medioni, G.: Image Vision Computing 10(3), 145 (1992)CrossRefGoogle Scholar
  26. 26.
    Zhang, Z.: International Journal of Computer Vision 13(2), 119 (1994)CrossRefGoogle Scholar
  27. 27.
    Litzenberg, D., et al.: Int J. Radiat. Oncol. Biol. Phys. 52(3), 699 (2002)CrossRefGoogle Scholar
  28. 28.
    Alasti, H., et al.: Int J. Radiat. Oncol. Biol. Phys. 49(3), 869 (2001)CrossRefGoogle Scholar
  29. 29.
    see, e.g., Morrison, D.F.: Multivariate Statistical Methods. McGraw-Hill, New York (1967), http://online.sfsu.edu/~efc/classes/biol710/manova/manovanew.htm
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jorn A. van Dalen
    • 1
  • H. J. Huisman
    • 1
  • A. Welmers
    • 1
  • J. O. Barentsz
    • 1
  1. 1.Department of RadiologyUniversity Medical Center St. RadboudNijmegenThe Netherlands

Personalised recommendations