Skip to main content

Algorithms for Graph Rigidity and Scene Analysis

  • Conference paper
Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool.

We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, A., Jordán, T.: A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid. J. Combinatorial Theory, Ser. B. 88, 77–97 (2003)

    Article  MATH  Google Scholar 

  2. Connelly, R.: On generic global rigidity, Applied geometry and discrete mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 147–155. Amer. Math. Soc., Providence (1991)

    Google Scholar 

  3. Frank, A., Gyárfás, A.: How to orient the edges of a graph, Combinatorics (Keszthely). Coll. Math. Soc. J. Bolyai 18, 353–364 (1976)

    Google Scholar 

  4. Gabow, H.N., Westermann, H.H.: Forests, frames and games: Algorithms for matroid sums and applications. Algorithmica 7, 465–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. AMS Graduate Studies in Mathematics, vol. 2 (1993)

    Google Scholar 

  6. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hendrickson, B., Jacobs, D.: An algorithm for two-dimensional rigidity percolation: the pebble game. J. Computational Physics 137, 346–365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  9. Imai, H.: On combinatorial structures of line drawings of polyhedra. Discrete Appl. Math. 10, 79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs, EGRES Technical Report 2002-12, submitted to J. Combin. Theory Ser. B, www.cs.elte.hu/egres/

  11. Jacobs, D.J., Thorpe, M.F.: Generic rigdity percolation: the pebble game. Phys. Rev. Lett. 75, 4051 (1995)

    Google Scholar 

  12. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Engineering Math. 4, 331–340 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods 3(1), 91–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sugihara, K.: On some problems in the design of plane skeletal structures. SIAM J. Algebraic Discrete Methods 4(3), 355–362 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sugihara, K.: Machine interpretation of line drawings. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Whiteley, W.: Parallel redrawing of configurations in 3-space, preprint, Department of Mathematics and Statistics, York University, North York, Ontario (1987)

    Google Scholar 

  17. Whiteley, W.: A matroid on hypergraphs with applications in scene analysis and geometry. Discrete Comput. Geometry 4, 75–95 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Whiteley, W.: Some matroids from discrete applied geometry. Matroid theory, Seattle, WA, 1995, pp. 171–311, Contemp. Math., 197, Amer. Math. Soc., Providence (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berg, A.R., Jordán, T. (2003). Algorithms for Graph Rigidity and Scene Analysis. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics