Advertisement

Modelling Soil Radon Concentration for Earthquake Prediction

  • Sašo Džeroski
  • Ljupco Todorovski
  • Boris Zmazek
  • Janja Vaupotic
  • Ivan Kobal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)

Abstract

We use regression/model trees to build predictive models for radon concentration in soil gas on the basis of environmental data, i.e., barometric pressure, soil temperature, air temperature and rainfall. We build model trees (one per station) for three stations in the Krško basin, Slovenia. The trees predict radon concentration with a (cross-validated) correlation of 0.8, provided radon is influenced only by environmental parameters (and not seismic activity). In periods with seismic activity, however, this correlation is much lower. The increase in prediction error appears a week before earthquakes with local magnitude 0.8 to 3.3.

Keywords

Root Mean Square Error Seismic Activity Regression Tree Radon Concentration Thermal Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D., Kibler, D.: Instance based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  2. Belayev, A.A.: Specific Features of radon earthquake precursors. Geochem. Int. 12, 1245–1250 (2001)Google Scholar
  3. Biagi, P.F., Ermini, A., Kingsley, S.P., Khatkevich, Y.M., Gordeev, E.I.: Difficulties with interpreting changes in groundwater gas content as earthquake precursors in Kamchatka. Russia. J. Seismol. 5, 487–497 (2001)CrossRefGoogle Scholar
  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)zbMATHGoogle Scholar
  5. Cuomo, V., Di Bello, G., Lapenna, V., Piscitelli, S., Telesca, L., Macchiato, M., Serio, C.: Robust statistical methods to discriminate extreme events in geoeletrical precursory signals: implications with earthquake prediction. Nat. Hazard 21, 247–261 (2000)CrossRefGoogle Scholar
  6. Di Bello, G., Ragosta, M., Heinicke, J., Koch, U., Lapenna, V., Piscitelli, S., Macchiato, M., Martinelli, G.: Time dinamics of background noise in geoelectrical and geochemical signals: An application in a seismic area of Southern Italy. Il Nuovo Cimento 6, 609–629 (1998)Google Scholar
  7. Dobrovolsky, I.P., Zubkov, S.I., Miachkin, V.I.: Estimation of the Size of Earthquake Preparation Zones. Pure Appl. Geophys. 117, 1025–1044 (1979)CrossRefGoogle Scholar
  8. Džeroski, S.: Applications of FDD methods in environmental sciences. In: Kloesgen, W., Zytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)Google Scholar
  9. Džeroski, S., Todorovski, L.: Discovering dynamics: from inductive logic programming to machine discovery. Journal of Intelligent Information Systems 4, 89–108 (1995)CrossRefGoogle Scholar
  10. Gosar, A.: Seismic reflection surveys of the Krsko basin structure: implications for earthquake hazard at the Krško nuclear power plant, southeast Slovenia. J. Appl. Geophys. 39, 131–153 (1998)CrossRefGoogle Scholar
  11. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M., Sano, Y.: Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61 (1995)CrossRefGoogle Scholar
  12. Lapajne, J.K., Fajfar, P.: Seismic hazard reassessment of an existing NPP in Slovenia. Nucl. Eng. Design 175, 215–226 (1997)CrossRefGoogle Scholar
  13. Mjachkin, V.I., Brace, W.E., Sobolev, G.A., Dieterich, J.H.: Two models for earthquake forerunners. Pure Appl Geophys 113, 169–181 (1975)CrossRefGoogle Scholar
  14. Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., Akashe, B.: Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. J. Environ. Radioact. 62, 225–233 (2001)CrossRefGoogle Scholar
  15. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)Google Scholar
  16. Scholz, C.H., Sykes, L.R., Agrawal, Y.P.: Earthquake prediction: A physical basis. Science 181, 803–810 (1973)CrossRefGoogle Scholar
  17. Singh, M., Ramola, R.C., Singh, B., Singh, S., Virk, H.S.: Radon anomalies: correlation with seismic activities in Northern India. In: Proceedings of the Second Workshop on Radon Monitoring in Radioprotection. Environmental and/or Earth Sciences, Trieste, November 25 - December 6, pp. 359–377. World Scientific Publishing, Singapore (1993)Google Scholar
  18. Singh, M., Virk, H.S.: Investigation of radon-222 in soil-gas as an earthquake precursor. Nucl. Geophys. 8, 185–193 (1994)Google Scholar
  19. Singh, M., Kumar, M., Jain, R.K., Chatrath, R.P.: Radon in ground water related to seismic events. Radiat. Measure. 30, 465–469 (1999)CrossRefGoogle Scholar
  20. Sultankhodajev, A.N.: Hydrogeoseismic precursors to earthquakes. In: Earthquake Prediction, UNESCO, Paris, pp. 181–191 (1984)Google Scholar
  21. Teng, T.L.: Some recent studies on groundwater radon content as an earthquake precursor. J. Geophys. Res. 85, 3089–3099 (1980)CrossRefGoogle Scholar
  22. Ulomov, V.I., Mavashev, B.Z.: Forerunners of the Tashkent earthquake. Izv. Akad. Nauk Uzb. SSR 188-200 (1971)Google Scholar
  23. Virk, H.S., Walia, V., Kumar, N.: Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India. J. Geodyn. 31, 201–210 (2001)CrossRefGoogle Scholar
  24. Wakita, H.: Earthquake Prediction by Geochemical Techniques. Rec. Progr. Nat. Sci. Jpn. 4, 67–75 (1979)Google Scholar
  25. Wakita, H., Nakamura, Y., Sano, Y.: Short-term and intermediate-term geochemical precursors. Pure Appl. Geophys. 126, 267–278 (1988)CrossRefGoogle Scholar
  26. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous lasses. In: Proceedings of the Poster Papers of the European Conference on Machine Learning. Faculty of Informatics and Statistics. University of Economics, Prague (1997)Google Scholar
  27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)Google Scholar
  28. Yasuoka, Y., Shinogi, M.: Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 72, 759–761 (1997)CrossRefGoogle Scholar
  29. Zmazek, B., Vaupotič, J., Živčić, M., Premru, U., Kobal, I.: Radon monitoring for earthquake prediction in Slovenia. Fizika B (Zagreb) 9, 111–118 (2000a)Google Scholar
  30. Zmazek, B., Vaupotič, J., Bidovec, M., Poljak, M., Živčić, M., Pineau, J.F., Kobal, I.: Radon monitoring in soil gas tectonic faults in the Krško basin. In: Book of Abstracts: New Aspects of Radiation Measurements, Dosimetry and Spectrometry. 2nd Dresden Symposium on Radiation Protection, September 10-14, 2000 (2000b)Google Scholar
  31. Zmazek, B., Vaupotič, J., Živčić, M., Martinelli, G., Italiano, F., Kobal, I.: Radon, temperature, electrical conductivity and 3He/4He measutements in three thermal springs in Slovenia. In: Book of Abstracts: New Aspects of Radiation Measurements, Dosimetry and Spectrometry. 2nd Dresden Symposium on Radiation Protection, September 10-14, 2000 (2000c)Google Scholar
  32. Zmazek, B., Živčić, M., Vaupotič, J., Bidovec, M., Poljak, M., Kobal, I.: Soil radon monitoring in the Krško basin, Slovenia. Appl. Radiat. Isot. 56, 649–657 (2002a)CrossRefGoogle Scholar
  33. Zmazek, B., Vaupotič, J., Kobal, I.: Radon, temperature and electric conductivity in slovenian thermal waters as potential earthquake precursors. In: 1st Workshop on Natural Ra-dionuclides in Hydrology and Hydrogeology, Centre Universitaire de Luxembourg (2002b)Google Scholar
  34. Zmazek, B., Italiano, F., Živčić, M., Vaupotič, J., Kobal, I., Martinelli, G.: Geochemical monitoring of thermal waters in Slovenia: relationships to seismic activity. Appl. Radiat. Isot. 57, 919–930 (2002c)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sašo Džeroski
    • 1
  • Ljupco Todorovski
    • 1
  • Boris Zmazek
    • 1
  • Janja Vaupotic
    • 1
  • Ivan Kobal
    • 1
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations