An Appraisal of UNIVAUTO – The First Discovery Program to Generate a Scientific Article

  • Vladimir Pericliev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)


In a companion paper ([14]), I describe UNIVAUTO (UNIVersals AUthoring TOol), a linguistic discovery program that uncovers language universals and can write a report in English on its discoveries. In this contribution, the system is evaluated along a number of parameters that have been suggested in the literature as necessary ingredients of a successful discovery program. These parameters include the novelty, interestingness, plausibility and intelligibility of results, as well as the system’s portability and insightfulness.


Discovery System Discovery Program Language Family Language Universal Propositional Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical discovery. International Journal of Human-Computer Studies 53(3), 351–376 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Croft, W.: Typology and Universals. Cambridge University Press, Cambridge (1990)Google Scholar
  3. 3.
    Fajtlowicz, S.: On conjectures of Graffiti. Discrete mathematics 72, 113–118 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenberg, J.H.: Some universals of grammar with particular reference to the order of meaningful elements. In: Greenberg, J.H. (ed.) Universals of Language, pp. 73–113. MIT Press, Cambridge (1966)Google Scholar
  5. 5.
    Xuang, X., Fielder, A.: Presenting machine-found proofs. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 221–225. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Hawkins, J.: Word Order Universals. Academic Press, New York (1983)Google Scholar
  7. 7.
    Jakobson, R.: Kindersprache, Aphasie, und allgemeine Lautgesetze. Almqvist & Wilksell, Uppsala (1941)Google Scholar
  8. 8.
    Maddieson, I.: Patterns of Sounds. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  9. 9.
    Maddieson, I.: Testing the universality of phonological generalizations with a phonetically specified segment database: results and limitations. Phonetica 48, 193–206 (1991)CrossRefGoogle Scholar
  10. 10.
    Pericliev, V., Valdés-Pérez, R.: Automatic componential analysis of kinship semantics with a proposed structural solution to the problem of multiple models. Anthropological Linguistics 40(2), 272–317 (1998)Google Scholar
  11. 11.
    Pericliev, V.: Further implicational universals in Greenberg’s data (a computergenerated article). Contrastive Linguistics 24, 40–51 (1999)Google Scholar
  12. 12.
    Pericliev, V.: The prospects for machine discovery in linguistics. Foundations of Science 4(4), 463–482 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pericliev, V.: More statistical implicational universals in Greenberg’s data (another computer-generated article). Contrastive Linguistics 25(2), 115–125 (2000)Google Scholar
  14. 14.
    Pericliev, V.: A linguistic discovery system that verbalises its discoveries. In: COLING 9th International Conference on Computational Linguistics, Taipei, Taiwan, August 24– September 1, pp. 1258–1262 (2002)Google Scholar
  15. 15.
    Pericliev, V.: Economy in formulating typological generalizations. Linguistic Typology 6(1), 49–68 (2002)CrossRefGoogle Scholar
  16. 16.
    Pericliev, V.: Machine discovery of phonological universals (2003) (Under submission)Google Scholar
  17. 17.
    Swanson, N.: An interactive system for finding complementary literature: A stimulus to scientific discovery. Artificial Intelligence 91(2), 183–203 (1997)zbMATHCrossRefGoogle Scholar
  18. 18.
    Valdés-Pérez, R., Pericliev, V.: Computer Enumeration of Significant Implicational Universals of Kinship Terminology. Cross-Cultural Research: The Journal of Comparative Social Science 33(2), 162–174 (1999)Google Scholar
  19. 19.
    Valdés-Pérez, R.: Conjecturing hidden entities via simplicity and conservation laws: Machine discovery in chemistry. Artificial Intelligence 65(2), 247–280 (1994)CrossRefGoogle Scholar
  20. 20.
    Valdés-Pérez, R.: Principles of human-computer collaboration for knowledge discovery in science. Artificial Intelligence 107, 335–346 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vladimir Pericliev
    • 1
  1. 1.Institute of Mathematics and Informatics, bl.8SofiaBulgaria

Personalised recommendations