Advertisement

Elements of an Agile Discovery Environment

  • Peter A. Grigoriev
  • Serhiy A. Yevtushenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)

Abstract

Machine learning methods and data mining techniques have proved to be quite helpful in a number of discovery tasks. However, the most popular modern tools in this area do not tend to back the discovery process properly. In this paper we investigate the reasons that prevent modern data mining tools from becoming convenient and productive discovery environments. We come up with principles of an agile discovery environment, i.e. a data mining-driven software designed to support the process of discovery.

Keywords

Data Mining Discovery Process Machine Learning Method Inductive Logic Programming Data Mining Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manifesto for agile software development (2001), http://agilemanifesto.org/
  2. 2.
    Piscopo, C., Birattari, M.: Invention vs. discovery. a critical discussion. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 457–462. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Shneiderman, B.: Inventing discovery tools: Combining information visualization with data mining. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 17–29. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    KD-Nuggets. Kdnuggets: Polls: Data mining tools you regularly use (June 2002) http://www.kdnuggets.com/polls/2002/data_mining_tools.htm
  5. 5.
  6. 6.
    Weka 3: Machine learning software in Java, http://www.cs.waikato.ac.nz/ml/weka/
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    de Wolf, R., Nienhuys-Cheng, S.-H.: Foundations of inductive logic programming. Lecture notes in artificial intelligence. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Finn, V.: Plausible reasoning of JSM-type in open (+/-) worlds. In: Architectures for Semiotic Modeling and Situation Analysis in Large Complex Systems, Monterey, CA, USA (1995)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Data Mining Group. Predictive model markup language (PMML), http://www.dmg.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Peter A. Grigoriev
    • 1
  • Serhiy A. Yevtushenko
    • 1
  1. 1.TU DarmstadtDarmstadtGermany

Personalised recommendations