An Algorithm for Discovery of New Families of Optimal Regular Networks

  • Oleg Monakhov
  • Emilia Monakhova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)


This work describes a new algorithm for discovery of analytical descriptions of new dense families of optimal regular networks using evolutionary computation. We present the new families of the networks of degree 3 and 6 obtained by the discovery algorithm which improve previously known results.


Interconnection Network Discovery Algorithm Circulant Graph Optimal Graph Loop Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arden, B.W., Lee, H.: Analysis of chordal ring networks. IEEE Trans. Computers C-30, 291–295 (1981)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Balaban, A.T.: Reaction graphs. In: Bonchev, D., Mekenyan, O. (eds.) Graph Theoretical Approaches to Chemical Reactivity, pp. 137–180. Kluwer Academic Publishers, Netherlands (1994)Google Scholar
  3. 3.
    Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a survey. J. Parallel Distributed Comput. 24, 2–10 (1995)CrossRefGoogle Scholar
  4. 4.
    Bermond, J.-C., Illiades, G., Peyrat, C.: An optimization problem in distributed loop computer networks. In: Proc. of Third International Conference on Combinatorial Math., New York, USA, June 1985, vol. 555, pp. 45–55. Ann. New York Acad. Sci. (1985)Google Scholar
  5. 5.
    Boesch, F.T., Wang, J.-F.: Reliable circulant networks with minimum transmission delay. IEEE Trans. Circuits Syst. CAS-32, 1286–1291 (1985)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, S., Jia, X.-D.: Undirected loop networks. Networks 23, 257–260 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (1995)Google Scholar
  8. 8.
    Koza, J.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  9. 9.
    Kwai, D.-M., Parhami, B.: Tight Bounds on the Diameter of Gaussian Cubes. The Computer Journal 41(1), 52–56 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Monakhov, O.G.: Parametrical description of structures of homogeneous computer systems. Vychislitelnye sistemy (Computer systems), Novosibirsk (80), 3–17 (1979)Google Scholar
  11. 11.
    Monakhov, O.G., Monakhova, E.A.: A Class of Parametric Regular Networks for Multicomputer Architectures. Int’l Scientific Journal Computacion y Sistemas (Computing and Systems) 4(2), 85–93 (2000)Google Scholar
  12. 12.
    Monakhov, O.G., Monakhova, E.A.: Parallel Systems with Distributed Memory: Structures and Organization of Interactions, Novosibirsk. SB RAS Publ. (2000) (in Russian)Google Scholar
  13. 13.
    Monakhova, E.A.: On analytical representation of optimal two-dimensional Diophantine structures of homogeneous computer systems. Computing systems, 90, Novosibirsk, 81–91 (1981)Google Scholar
  14. 14.
    Morillo, P., Comellas, F., Fiol, M.A.: The optimization of chordal ring networks. Communication Technology, World Scientific, 295–299 (1987)Google Scholar
  15. 15.
    Schwefel, H.-P., Baeck, T.: Artificial evolution: How and why?, Genetic Algorithms and Evolution Strategy in Engineering and Computer Science – Recent advances and industrial applications, pp. 1–19. Wiley, Chichester (1997)Google Scholar
  16. 16.
    Yebra, J.L.A., Fiol, M.A., Morillo, P., Alegre, I.: The diameter of undirected graphs associated to plane tessellations. Ars Combinatoria 20B, 159–172 (1985)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oleg Monakhov
    • 1
  • Emilia Monakhova
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia

Personalised recommendations