Signal Extraction and Knowledge Discovery Based on Statistical Modeling

  • Genshiro Kitagawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)


In the coming post IT era, the problems of signal extraction and knowledge discovery from huge data sets will become very important. For this problem, the use of good model is crucial and thus the statistical modeling will play an important role. In this paper, we show two basic tools for statistical modeling, namely the information criteria for the evaluation of the statistical models and generic state space model which provides us with a very flexible tool for modeling complex and time-varying systems. As examples of these methods we shall show some applications in seismology and macro economics.


State Space Model Signal Extraction Asymptotic Bias Macro Economic Augmented State Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaike, H.: Information Theory and an Extension of the Maximum Likelihood Principle. In: Petrov, B.N., Csaki, F. (eds.) 2nd International Symposium in Information Theory, Akademiai Kiado, Budapest, pp. 267–281 (1973)Google Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19, 716–723 (1974)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Akaike, H.: Likelihood and the Bayes procedure (with discussion). In: Bernardo, J.M., De Groot, M.H., Lindley, D.V., Smith, A.F.M. (eds.) Bayesian Statistics, pp. 143–166. University press, Valencia (1980)Google Scholar
  4. 4.
    Akaike, H., Kitagawa, G. (eds.): The Practice of Time Series Analysis. Springer, New York (1999)zbMATHGoogle Scholar
  5. 5.
    Alspach, D.L., Sorenson, H.W.: Nonlinear Bayesian Estimation Using Gaussian Sum Approximations. IEEE Transactions on Automatic Control AC-17, 439–448 (1972)CrossRefGoogle Scholar
  6. 6.
    Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, New Jersey (1979)zbMATHGoogle Scholar
  7. 7.
    Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2000)Google Scholar
  8. 8.
    Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear /non- Gaussian Bayesian state estimation. IEE Proceedings-F 140(2), 107–113 (1993)Google Scholar
  10. 10.
    Ishiguro, M., Sakamoto, Y., Kitagawa, G.: Bootstrapping log-likelihood and EIC, an extension of AIC. Annals of the Institute of Statistical Mathematics 49(3), 411–434 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kitagawa, G.: Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association 82, 1032–1063 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5, 1–25 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kitagawa, G.: Self-organizing State Space Model. Journal of the American Statistical Association 93(443), 1203–1215 (1998)CrossRefGoogle Scholar
  14. 14.
    Kitagawa, G., Gersch, W.: A Smoothness Priors-State Space Approach to the Modeling of Time Series with Trend and Seasonality. Journal of the American Statistical Association 79(386), 378–389 (1984)CrossRefGoogle Scholar
  15. 15.
    Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, vol. 116. Springer, New York (1996)zbMATHGoogle Scholar
  16. 16.
    Kitagawa, G., Higuchi, T.: Automatic transaction of signal via statistical modeling. In: The Proceedings of The First International Conference on Discovery Science. LNCS (LNAI), pp. 375–386. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Kitagawa, G., Takanami, T., Matsumoto, N.: Signal Extraction Problems in Seismology. Intenational Statistical Review 69(1), 129–152 (2001)zbMATHGoogle Scholar
  18. 18.
    Konishi, S., Kitagawa, G.: Generalised information criteria in model selection. Biometrika 83(4), 875–890 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sakamoto, Y., Ishiguro, M., Kitagawa, G.: Akaike Information Criterion Statistics. D-Reidel, Dordlecht (1986)zbMATHGoogle Scholar
  20. 20.
    West, M., Harrison, P.J., Migon, H.S.: Dynamic generalized linear models and Bayesian forecasting (with discussion). Journal of the American Statistical Association 80, 73–97 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Whittaker, E.T.: On a new method of graduation. Proc. Edinborough Math. Assoc. 78, 81–89 (1923)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Genshiro Kitagawa
    • 1
  1. 1.The Institute of Statistical MathematicsTokyoJapan

Personalised recommendations