Abduction and the Dualization Problem

  • Thomas Eiter
  • Kazuhisa Makino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2843)


Computing abductive explanations is an important problem, which has been studied extensively in Artificial Intelligence (AI) and related disciplines. While computing some abductive explanation for a literal χ with respect to a set of abducibles A from a Horn propositional theory Σ is intractable under the traditional representation of Σ by a set of Horn clauses, the problem is polynomial under model-based theory representation, where Σ is represented by its characteristic models. Furthermore, computing all the (possibly exponentially) many explanations is polynomial-time equivalent to the problem of dualizing a positive CNF, which is a well-known problem whose precise complexity in terms of the theory of NP-completeness is not known yet. In this paper, we first review the monotone dualization problem and its connection to computing all abductive explanations for a query literal and some related problems in knowledge discovery. We then investigate possible generalizations of this connection to abductive queries beyond literals. Among other results, we find that the equivalence for generating all explanations for a clause query (resp., term query) χ to the monotone dualization problem holds if χ contains at most k positive (resp., negative) literals for constant k, while the problem is not solvable in polynomial total-time, i.e., in time polynomial in the combined size of the input and the output, unless P=NP for general clause resp. term queries. Our results shed new light on the computational nature of abduction and Horn theories in particular, and might be interesting also for related problems, which remains to be explored.


Abduction monotone dualization hypergraph transversals Horn functions model-based reasoning polynomial total-time computation NP-hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Queries and Concept Learning. Machine Learning 2, 319–342 (1996)Google Scholar
  2. 2.
    Bioch, C., Ibaraki, T.: Complexity of identification and dualization of positive Boolean functions. Information and Computation 123, 50–63 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Boros, E., Crama, Y., Hammer, P.L.: Polynomial-time inference of all valid implications for Horn and related formulae. Ann. Mathematics and Artificial Intelligence 1, 21–32 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded generating problems: Partial and multiple transversals of a hypergraph. SIAM J. Computing 30, 2036–2050 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded generating problems: All minimal integer solutions for a monotone system of linear inequalities. SIAM Journal on Computing 31, 1624–1643 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of generating maximal frequent and minimal infrequent sets. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 133–141. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An intersection inequality for discrete distributions and related generation problems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 543–555. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optimization Methods and Software 10, 147–156 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Brewka, G., Dix, J., Konolige, K.: Nonmonotonic Reasoning – An Overview. CSLI Lecture Notes, vol. 73. CSLI Publications, Stanford University (1997)zbMATHGoogle Scholar
  10. 10.
    Bshouty, N.H.: Exact Learning Boolean Functions via the Monotone Theory. Information and Computation 123, 146–153 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Bylander, T.: The monotonic abduction problem:A functional characterization on the edge of tractability. In: Proc. 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 70–77 (1991)Google Scholar
  12. 12.
    Crama, Y.: Dualization of regular boolean functions. Discrete App. Math. 16, 79–85 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    de Kleer, J.: An assumption-based truth maintenance system. Artif. Int. 28, 127–162 (1986)CrossRefGoogle Scholar
  14. 14.
    Dechter, R., Pearl, J.: Structure identification in relational data. Artificial Intelligence 58, 237–270 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    del Val, A.: On some tractable classes in deduction and abduction. Artificial Intelligence 116(1-2), 297–313 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    del Val, A.: The complexity of restricted consequence finding and abduction. In: Proc. 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 337–342 (2000)Google Scholar
  17. 17.
    Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries. Machine Learning 37, 89–110 (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dowling, W., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn theories. Journal of Logic Programming 3, 267–284 (1984)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. Technical Report CD-TR 91/16, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (January 1991)Google Scholar
  20. 20.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the ACM 42(1), 3–42 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM Journal on Computing 32(2), 514–537 (2003) (Preliminary paper in Proc. ACM STOC 2002)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Eiter, T., Makino, K.: On computing all abductive explanations. In: Proc. 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 62–67 (2002); Preliminary Tech. Rep. INFSYS RR-1843-02-04, Institut für Informationssysteme, TU Wien, April 2002Google Scholar
  25. 25.
    Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional Horn theories. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 197–211. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Eiter, T., Ibaraki, T., Makino, K.: Computing intersections of Horn theories for reasoning with models. Artificial Intelligence 110(1-2), 57–101 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Eshghi, K.: A tractable class of abduction problems. In: Proc. 13th International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 3–8 (1993)Google Scholar
  28. 28.
    Fredman, M., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diagnosis, and therapy. In: Gottlob, G., Nejdl, W. (eds.) Expert Systems in Engineering. LNCS, vol. 462, pp. 69–78. Springer, Heidelberg (1990)Google Scholar
  30. 30.
    Gaur, D.R., Krishnamurti, R.: Self-duality of bounded monotone boolean functions and related problems. In: Arimura, H., Sharma, A.K., Jain, S. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 209–223. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, hypergraph transversals, and machine learning. In: Proc. 16th ACMSymposium on Principles of Database Systems (PODS 1996), pp. 209–216 (1993)Google Scholar
  32. 32.
    Inoue, K.: Linear resolution for consequence finding. Artif. Int. 56(2-3), 301–354 (1992)CrossRefzbMATHGoogle Scholar
  33. 33.
    Johnson, D.S.: A Catalog of Complexity Classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, ch. 2 Elsevier, Amsterdam (1990)Google Scholar
  34. 34.
    Kautz, H., Kearns, M., Selman, B.: ReasoningWith Characteristic Models. In: Proc. 11th National Conference on Artificial Intelligence (AAAI 1993), pp. 34–39 (1993)Google Scholar
  35. 35.
    Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artificial Intelligence 74, 129–245 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Kavvadias, D., Papadimitriou, C., Sideri, M.: On Horn envelopes and hypergraph transversals. In: Ng, K.W., et al. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)Google Scholar
  37. 37.
    Kavvadias, D.J., Stavropoulos, E.C.: Monotone Boolean dualization is in co-NP[log2n]. Information Processing Letters 85, 1–6 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Kean, A., Tsiknis, G.: Assumption based reasoning and Clause Management Systems. Computational Intelligence 8(1), 1–24 (1992)CrossRefGoogle Scholar
  39. 39.
    Kean, A., Tsiknis, G.: Clause Management Systems (CMS). Computational Intelligence 9(1), 11–40 (1992)CrossRefGoogle Scholar
  40. 40.
    Khardon, R.: Translating between Horn representations and their characteristic models. Journal of Artificial Intelligence Research 3, 349–372 (1995)zbMATHGoogle Scholar
  41. 41.
    Khardon, R., Mannila, H., Roth, D.: Reasoning with examples: Propositional formulae and database dependencies. Acta Informatica 36(4), 267–286 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Khardon, R., Roth, D.: Reasoning with models. Artif. Int. 87(1/2), 187–213 (1996)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Khardon, R., Roth, D.: Defaults and relevance in model-based reasoning. Artificial Intelligence 97(1/2), 169–193 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Levesque, H.: Making believers out of computers. Artificial Intelligence 30, 81–108 (1986)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Lovász, L.: Combinatorial optimization: Some problems and trends. DIMACS Technical Report 92-53, RUTCOR, Rutgers University (1992)Google Scholar
  46. 46.
    Lucchesi, C.L., Osborn, S.: Candidate Keys for Relations. Journal of Computer and System Sciences 17, 270–279 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Makino, K., Ibaraki, T.: The maximum latency and identification of positive Boolean functions. SIAM Journal on Computing 26, 1363–1383 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Makino, K., Ibaraki, T.: A fast and simple algorithm for identifying 2-monotonic positive Boolean functions. Journal of Algorithms 26, 291–305 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Mannila, H., Räihä, K.-J.: Design by Example: An application of Armstrong relations. Journal of Computer and System Sciences 22(2), 126–141 (1986)CrossRefGoogle Scholar
  50. 50.
    Mannila, H., Räihä, K.-J.: Algorithms for inferring functional dependencies. Technical Report A-1988-3, University of Tampere, CS Dept., Series of Publ. A (April 1988)Google Scholar
  51. 51.
    Marquis, P.: Consequence Finding Algorithms. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Algorithms for Uncertainty and Defeasible Reasoning, vol. V, pp. 41–145. Kluwer Academic, Dordrecht (2000)Google Scholar
  52. 52.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  53. 53.
    Papadimitriou, C.H.: NP-Completeness:Aretrospective. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 2–6. Springer, Heidelberg (1997)Google Scholar
  54. 54.
    Peirce, C.S.: Abduction and Induction. In: Buchler, J. (ed.) Philosophical Writings of Peirce, ch. 11. Dover, NewYork (1955)Google Scholar
  55. 55.
    Poole, D.: Explanation and prediction: An architecture for default and abductive reasoning. Computational Intelligence 5(1), 97–110 (1989)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: Preliminary report. In: Proc. 6th National Conference on Artificial Intelligence (AAAI 1987), pp. 183–188 (1982)Google Scholar
  57. 57.
    Selman, B., Levesque, H.J.: Abductive and default reasoning: A computational core. In: Proc. 8th National Conference on Artificial Intelligence (AAAI 1990), July 1990, pp. 343–348 (1990)Google Scholar
  58. 58.
    Selman, B., Levesque, H.J.: Support set selection for abductive and default reasoning. Artificial Intelligence 82, 259–272 (1996)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Zanuttini, B.: New polynomial classes for logic-based abduction. Journal of Artificial Intelligence Research (2003) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Kazuhisa Makino
    • 2
  1. 1.Institut für InformationssystemeTechnische Universität WienWienAustria
  2. 2.Division of Mathematical Science for Social Systems, Graduate School of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations