Advertisement

Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

  • Satoshi Matsumoto
  • Yusuke Suzuki
  • Takayoshi Shoudai
  • Tetsuhiro Miyahara
  • Tomoyuki Uchida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2842)

Abstract

In the field of Web mining, a Web page can be represented by a rooted tree T such that every internal vertex of T has ordered children and string data such as tags or texts are assigned to edges of T. A term tree is an ordered tree pattern, which has ordered tree structures and variables, and is suited for a representation of a tree structured pattern in Web pages. A term tree t is allowed to have a repeated variable which occurs in t more than once. In this paper, we consider the learnability of finite unions of term trees with repeated variables in the query learning model of Angluin (1988). We present polynomial time learning algorithms for finite unions of term trees with repeated variables by using superset and restricted equivalence queries. Moreover we show that there exists no polynomial time learning algorithm for finite unions of term trees by using restricted equivalence, membership and subset queries. This result indicates the hardness of learning finite unions of term trees in the query learning model.

Keywords

Algorithm Learn Polynomial Time Term Tree Tree Pattern Internal Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, San Francisco (2000)Google Scholar
  2. 2.
    Amoth, T.R., Cull, P., Tadepalli, P.: Exact learning of tree patterns from queries and counterexamples. In: Proc. COLT 1998, pp. 175–186. ACM Press, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Amoth, T.R., Cull, P., Tadepalli, P.: Exact learning of unordered tree patterns from queries. In: Proc. COLT 1999, pp. 323–332. ACM Press, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Angluin, D.: Finding pattern common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)Google Scholar
  6. 6.
    Arimura, H., Ishizaka, H., Shinohara, T.: Learning unions of tree patterns using queries. Theoretical Computer Science 185(1), 47–62 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arimura, H., Sakamoto, H., Arikawa, S.: Efficient learning of semi-structured data from queries. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 315–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Arimura, H., Shinohara, T., Otsuki, S.: Polynomial time algorithm for finding finite unions of tree pattern languages. In: Brewka, G., Jantke, K.P., Schmitt, P.H. (eds.) NIL 1991. LNCS (LNAI), vol. 659, pp. 118–131. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Lovász, L.: Two classical enumeration problems in graph theory. In: Lovász, L. (ed.) Combinatorial Problems and Exercises, North-Holland Publishing Company, Amsterdam (1979)Google Scholar
  10. 10.
    Matsumoto, S., Shoudai, T., Miyahara, T., Uchida, T.: Learning of finite unions of tree patterns with internal structured variables from queries. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Matsumoto, S., Shoudai, T., Miyahara, T., Uchida, T.: Learning unions of term tree languages using queries. In: Proceedings of LA Summer Symposium, July 2002, pp. 21–10 (2002)Google Scholar
  12. 12.
    Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Discovery of frequent tag tree patterns in semistructured web documents. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 341–355. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Suzuki, Y., Akanuma, R., Shoudai, T., Miyahara, T., Uchida, T.: Polynomial time inductive inference of ordered tree patterns with internal structured variables from positive data. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 169–184. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Satoshi Matsumoto
    • 1
  • Yusuke Suzuki
    • 2
  • Takayoshi Shoudai
    • 2
  • Tetsuhiro Miyahara
    • 3
  • Tomoyuki Uchida
    • 3
  1. 1.Department of Mathematical SciencesTokai UniversityHiratsukaJapan
  2. 2.Department of InformaticsKyushu UniversityKasugaJapan
  3. 3.Faculty of Information SciencesHiroshima City UniversityHiroshimaJapan

Personalised recommendations