Skip to main content

Remote Sensing by Infrared Heterodyne Spectroscopy

  • Chapter
Optical and Laser Remote Sensing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 39))

  • 391 Accesses

Abstract

Infrared heterodyne spectroscopy is a convenient technique for measuring atomic and molecular spectral lines with high sensitivity and specificity. The instrumental spectral resolving power can be made arbitrarily high although signal-to-noise considerations limit the maximum useful resolving powers (λ/∆λ) to ∽107 for passive sensing. Nevertheless, this provides the capability to resolve completely individual spectral lines, even when the line shapes are doppler-limited at temperature/molecular mass ratios as low as ∽2K/amu. Since the heterodyne process beats the source radiation against a laser local oscillator whose frequency is precisely known (typically to better than 1/107), the methodology provides very precise internal frequency calibration enabling great specificity in line identification and measurement of source motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reférences

  1. D. L. Spears, “IR Detectors: Heterodyne and Direct,” this proceedings.

    Google Scholar 

  2. G. Chin, D. Buhl, J. M. Florez, “Acouso-Optic Spectrometer for Radio Astironomy,” Heterodyne Systems and Technology, NASA CP-2138 (1980).

    Google Scholar 

  3. M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric Ozone Measurement with an Infrared Heterodyne Spectrometer,” Geophys. Res. Letters 5, 317 (1978).

    Article  ADS  Google Scholar 

  4. M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of Natural Gain Amplification in the 10μm CO2 Laser Bands on Mars: A Natural Laser”, Science, 212, 45 (1981).

    Article  ADS  Google Scholar 

  5. J. J. Hillman, T. Kostiuk, D. Buhl, J. L. Faris, J. C. Novaco, and M. J. Mumma, “Precision Measurements of NH3 Spectral Lines near 11 μm Using the Infrared Heterodyne Technique,” Optics Letters 1, 81 (1981).

    Article  ADS  Google Scholar 

  6. M. S. Shumate, R. T. Menzies, W. B. Grant, and d. S. McDougal, “Laser Absorption Spectrometer: Remote Measurement of Tropospheric Ozone,” Appl. Opt. 20, 545 (1981).

    Article  ADS  Google Scholar 

  7. R. T. Menzies, C. W. Rutledge, R. A. Zanteson, and D. L. Spears, “Balloon-borne Laser Heterodyne Radiometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 20, 536 (1981).

    Article  ADS  Google Scholar 

  8. M. Mumma, T. Kostiuk, S. Cohen, D. Buhl, and P. C. von Thuna, “Infrared Heterodyne Spectroscopy of Astronomical and Laboratory Sources at 8.5 μm,” Nature, 253, 514 (1975).

    Article  ADS  Google Scholar 

  9. D. A. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, and M. J. Mumma, “A Tuneable Diode Laser Heterodyne Spectrometer for Remote Observations Near 8 Microns,” Applied Optics 21, 253 (1982).

    Article  ADS  Google Scholar 

  10. M. A. Johnson, A. L. Betz, R. H. McLaren, E. C. Sutton, and C. H. Townes, “Non-thermal 10 μm CO2 Emission Lines in the Atmospheres of Mars and Venus,” Ap. J. 208, L145 (1976).

    Article  ADS  Google Scholar 

  11. C. N. Harward and J. M. Hoell, “Atmospheric Solar Absorption Measurements in the 9–11 μm Region using a Diode Laser Heterodyne Spectrometer,” Heterodyne Systems and Technology, NASA CP-2138 (1980).

    Google Scholar 

  12. J. D. Rogers, M. J. Mumma, T. Kostiuk, D. Deming, J. J. Hillman, J. Faris, and D. Zipoy, “Is there any Chlorine Monoxide in the Earth’s Stratosphere?”, Science (submitted).

    Google Scholar 

  13. R. T. Menzies, “Remote Measurement of CO in the Stratosphere,” Geophys. Res. Lett. 6, 151 (1979).

    Article  ADS  Google Scholar 

  14. R. A. McLaren and A. L. Betz, “Infrared Observations of Circumstellar Ammonia in OH/IR Supergiants, Ap. J. 240, L159 (1980).

    Article  ADS  Google Scholar 

  15. A. L. Betz, “Ethylene in IRC 10216,” Ap. J. 244, L103, 26 (1981).

    Google Scholar 

  16. D. A. Glenar, D. Deming, D. E. Jennings, T. Kostiuk, and M. J. Mumma, “Diode Laser Heterodyne Observations of SiO in Sunspots,” Solar Physics (submitted).

    Google Scholar 

  17. T. Kostiuk, M. J. Mumma, F. Espenak, D. Deming, D. Jennings, W. Maguire, and D. Zipoy, “Infrared Heterodyne Observations of 12μm Ethane Emission Lines Near the South Pole of Jupiter,” Icarus (submitted).

    Google Scholar 

  18. T. Kostiuk, M. J. Mumma, D. Buhl, L. Brown, J. Faris, and D. Spears, “NH3 Spectral Line Measurements on Earth and Jupiter Using a 10ym Superheterodyne Receiver,” Infrared Physics 17, 431 (1977).

    Article  ADS  Google Scholar 

  19. D. Deming, F. Espenak, D. Jennings, T. Kostiuk, and M. J. Mumma, “Evidence for High Altitude Haze-Thickening on the Dark Side of Venus from 10 Micron Heterodyne Spectroscopy of CO2”, Icarus (in press).

    Google Scholar 

  20. M. J. Mumma, T. Kostiuk, D. Buhl, D. Deming, and G. Chin and D. Zipoy, “Infrared Heterodyne Spectroscopy”, SPIE 280 (Infrared-Astronony) p. 111 (1981)and Optical Engineering (in press).

    Article  Google Scholar 

  21. Also see M. J. Mumma, T. Kostiuk, D. Buhl, “A 10μm Laser Heterodyne Spectrometer for Remote Detection of Trace Gases”, Optical Engineering 17, 50 (1977).

    ADS  Google Scholar 

  22. D. A. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, and M. J. Mumma, “A tuneable Diode Laser Heterodyne Spectrometer for Remote Observations Near 8 Microns,” Applied Optics 21, 253 (1982).

    Article  ADS  Google Scholar 

  23. See also M. Mumma, T. Kostiuk, S. Cohen, D. Buhl, and P. C. von Thuna, “Heterodyne Spectroscopy of Astronomical and Laboratory Sources Using Diode Laser Local Oscillators,” Space Science Reviews, 17, 661 (1975).

    Article  ADS  Google Scholar 

  24. M. Abbas, M. J. Mumma, T. Kostiuk, and D. Buhl, “Sensitivity Limits of an Infrared Heterodyne Spectrometer for Astrophysical Applications,” Appl. Opt. 15, 427 (1976).

    Article  ADS  Google Scholar 

  25. Heterodyne Systems and Technology, NASA CP 2138 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mumma, M.J. (1983). Remote Sensing by Infrared Heterodyne Spectroscopy. In: Killinger, D.K., Mooradian, A. (eds) Optical and Laser Remote Sensing. Springer Series in Optical Sciences, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39552-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39552-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-15736-7

  • Online ISBN: 978-3-540-39552-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics