Advertisement

Molecularly Accessible Permutations

  • Dónall A. Mac Dónaill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

The propagation of text expressed in an n-letter alphabet, An, may be effected by any of the set of associated permutations Sn, applied repeatedly or in suitable combinations until the original text is reproduced. Scaling as n!, the number of possible permutations rapidly becomes intractable, and individual permutations cannot be considered for all but the smallest alphabets. This paper explores how a molecular medium, in which replication must proceed by means of template propagation, might serve to limit the number of permutations which may be reasonably find a molecular expression. The analysis suggests that the number of molecularly realisable permutations is restricted to a limited variety of permutation types, scaling linearly with alphabet size. It is also suggested that alphabets with odd numbers of letters may be less accessible than alphabets with even numbers of letters.

Keywords

Equivalence Class Original Text Artificial Life Alphabet Size Template Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stauffer, A., Sipper, M.: An Interactive Self-Replicator Implemented in Hardware. Artificial Life 8, 175–183 (2002)CrossRefGoogle Scholar
  2. 2.
    Hull, D.: Replication, The Stanford Encyclopedia of Philosophy (Winter 2001 Edition), Zalta E.N. (ed.), plato.stanford.edu/archives/win2001/entries/replication/
  3. 3.
    Lawrence, D.S., Jiang, T., Levett, M.: Self-Assembling Supramolecular Complexes. Chem. Reviews 95, 2229–2260 (1995)CrossRefGoogle Scholar
  4. 4.
    Stahl, W.R., Goheen, H.E.: Molecular Algorithms. J. Theor. Biol. 5, 266–287 (1963)CrossRefGoogle Scholar
  5. 5.
    Hu, W., Fukugita, M., Zaldarriaga, M., Tegmark, M.: Astrophysical Journal, vol. 549, pp. 669–680 (2001)Google Scholar
  6. 6.
    Biggs, N.L.: Discrete Mathematics, Oxford, p. 423 (1989)Google Scholar
  7. 7.
    Ibid at p. 100 Google Scholar
  8. 8.
    Wang, M.D., Schnitzer, M.J., Yin, H., Landick, R., Gelles, J., Block, S.M.: Force and Velocity Measured for Single Molecules of RNA Polymerase. Science 282, 902–907 (1998)CrossRefGoogle Scholar
  9. 9.
    Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt, D.J., Sandler, S.J., Marians, K.J.: The Importance of Repairing Stalled Replication Forks. Nature 404, 37–41 (2000)CrossRefGoogle Scholar
  10. 10.
    Szathmáry, E.: What is the Optimum Size for the Genetic Alphabet? Proc. Nat. Acad. Sci. 89, 2614–2618 (1992)CrossRefGoogle Scholar
  11. 11.
    Peters, M., Rozas, I., Alkorta, I., Elguero, J.: DNA Triplexes: A Study of Their Hydrogen Bonds. J. Phys. Chem. B 107, 323–330 (2003)CrossRefGoogle Scholar
  12. 12.
    Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J.H.K.K., Lange, R.F.M., Lowe, J.K.L., Meijer, E.W.: Reversible Polymers Formed from Self- Complementary Monomers using Quadruple Hydrogen Bonding. Science 278, 1601–1604 (1997)CrossRefGoogle Scholar
  13. 13.
    Zimmerman, S.: Supramolecular Polymer Chemistry and the Origin of Life. In: XIIth Internations Conference of Supramolecular Chemisrtry, October 6–11, Israel (2002)Google Scholar
  14. 14.
    Mac Dónaill, D.A.: A Parity Code Interpretation of Nucleotide Alphabet Composition. Chem. Comm., 2062–2063 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dónall A. Mac Dónaill
    • 1
  1. 1.Department of ChemistryTrinity CollegeDublin 2Republic of Ireland

Personalised recommendations