Evolving Agent Societies with VUScape

  • P. C. Buzing
  • A. E. Eiben
  • M. C. Schut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


The main contribution of this paper is twofold. Firstly, it presents a new system for empirical investigations of evolving agent societies in SugarScapelike environments, which improves existing Sugarscape testbeds. Secondly, we introduce a framework for modelling communication and cooperation in an animal society. In this framework the environmental pressure to communicate and cooperate is controllable by a single parameter. We perform several experiments with different values for this parameter and observe some surprising outcomes.


Communicative Behaviour Social Simulation Agent Simulation Animal Society Execution Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avdis, E., Dautenhahn, K.: Self-organisation of communicating agents – linguistic diversity in populations of autonomous agents. In: Proceedings of the Eighth Symposium on Intelligent Robotic Systems (2000)Google Scholar
  2. 2.
    Collier, N.: Repast: An extensible framework for agent simulation. Technical report, ocial Science Research Computing, University of Chicago, Chicago, Illinois (2000)Google Scholar
  3. 3.
    Daniels, M.: Integrating simulation technologies with swarm. In: Proceedings of the Workshop on Agent Simulation: Applications, Models, and Tools. University of Chicago, Illinois (1999)Google Scholar
  4. 4.
    Eiben, A.E., Elia, D., van Hemert, J.I.: Population dynamics and emerging mental features in AEGIS. In: Banzhaf, W., Daida, J., Eiben, A., Garzon, M., Honavar, V., Jakiela, M., Smith, R. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13–17, 1999, vol. 2, pp. 1257–1264. Morgan Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science From The Bottom Up. Brookings Institute Press, Washington (1996)Google Scholar
  6. 6.
    Hales, D.: Evolving specialisation, altruism and group-level optimisation using tags. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 26–35. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Noble, J.: Cooperation, conflict and the evolution of communication. Journal of Adaptive Behaviour 7(3/4), 349–370 (1999)CrossRefGoogle Scholar
  8. 8.
    Parker, M.: Ascape: Abstracting complexity. Technical report, Center on Social and Economic Dynamics, The Brookings Institution, Washington D.C., Washington, USA (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. C. Buzing
    • 1
  • A. E. Eiben
    • 1
  • M. C. Schut
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations