Advertisement

Visualizing Evolutionary Dynamics of Self-Replicators Using Graph-Based Genealogy

  • Chris Salzberg
  • Antony Antony
  • Hiroki Sayama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

We present a general method for evaluating and visualizing evolutionary dynamics of self-replicators using a graph-based representation for genealogy. Through a transformation from the space of species and mutations to the space of nodes and links, evolutionary dynamics are understood as a flow in graph space. Mapping functions are introduced to translate graph nodes to points in an n-dimensional visualization space for interpretation and analysis. Using this scheme, we evaluate the effect of a dynamic environment on a population of self-reproducing loops. Resulting images visually reveal the critical role played by genealogical graph space partitioning in the evolutionary process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antony, A., Salzberg, C., Sayama, H.: A closer look at the evolutionary dynamics of self-reproducing cellular automata (accepted pending revisions)Google Scholar
  2. 2.
    Bedau, M., Brown, C.: Visualizing evolutionary activity of genotypes. Artificial Life 5, 17–35 (1999)CrossRefGoogle Scholar
  3. 3.
    Dennett, D.: Encyclopedia of Evolution, Pagel, M. (ed.) pp. 83–92. Oxford University Press, New York (2002)Google Scholar
  4. 4.
    Ikegami, T.: Evolvability of machines and tapes. Artificial Life and Robotics 3, 242–245 (1999)CrossRefGoogle Scholar
  5. 5.
    Langton, C.: Self-reproduction in cellular automata. Physica D 10, 135–144 (1984)CrossRefGoogle Scholar
  6. 6.
    Lenski, R., Ofria, C., Pennock, R., Adami, C.: The evolutionary origin of complex features. Nature 423, 139–144 (2003)CrossRefGoogle Scholar
  7. 7.
    Ray, T.: An approach to the synthesis of life. In: Artificial Life II. SFI Studies on the Sciences of Complexity, vol. XI, pp. 371–408. Addison-Wesley Publishing Company, Redwood City (1991)Google Scholar
  8. 8.
    Salzberg, C., Antony, A., Sayama, H.: (in preparation)Google Scholar
  9. 9.
    Sayama, H.: A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5, 343–365 (1999)CrossRefGoogle Scholar
  10. 10.
    Schuster, P., Fontana, W.: Chance and necessity in evolution: lessons from RNA. Physica D 133, 427–452 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Sipper, M.: Fifty years of research on self-replication: An overview. Artificial Life 4, 237–257 (1998)CrossRefGoogle Scholar
  12. 12.
    Szathmary, E.: A classification of replicators and lambda-calculus models of biological organization. In: Proceedings: Biological Sciences, vol. 260, pp. 279–286 (1995)Google Scholar
  13. 13.
    Yedid, G., Bell, G.: Macroevolution simulated with autonomously replicating computer programs. Nature 420, 810–812 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Chris Salzberg
    • 1
  • Antony Antony
    • 1
  • Hiroki Sayama
    • 2
  1. 1.Section Computational ScienceUniversiteit van AmsterdamThe Netherlands
  2. 2.Dept. of Human CommunicationUniversity of Electro-CommunicationsJapan

Personalised recommendations