Artificial Life as an Aid to Astrobiology: Testing Life Seeking Techniques

  • Florian Centler
  • Peter Dittrich
  • Lawrence Ku
  • Naoki Matsumaru
  • Jeffrey Pfaffmann
  • Klaus-Peter Zauner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


Searching for signatures of fossil or present life in our solar system requires autonomous devices capable of investigating remote locations with limited assistance from earth. Here, we use an artificial chemistry model to create spatially complex chemical environments. An autonomous experimentation technique based on evolutionary computation is then employed to explore these environments with the aim of discovering the chemical signature of small patches of biota present in the simulation space. In the highly abstracted environment considered, autonomous experimentation achieves fair to good predictions for locations with biological activity. We believe that artificially generated biospheres will be an important tool for developing the algorithms key to the search for life on Mars.


Cellular Automaton Reaction Network Test Life Simulation Space Planetary Rover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toulmin, S., Goodfield, J.: The Architecture of Matter. Harper & Row, New York (1962)Google Scholar
  2. 2.
    Anonymous: Astrobiology roadmap. U.S. National Aeronautics and Space Administration (NASA), (November 2002), Available at
  3. 3.
    Langton, C.G.: Artificial life. In: Langton, C.G. (ed.) Artificial Life. SFI Studies in the Science of Complexity, pp. 1–45. Addison-Wesley, Redwood City (1989)Google Scholar
  4. 4.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries—a review. Artificial Life 7, 225–275 (2001)CrossRefGoogle Scholar
  5. 5.
    Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M.: Scientific discovery: Computational exploration of the creative processes. MIT Press, Cambridge (1987)Google Scholar
  6. 6.
    de Jong, H., Rip, A.: The computer revolution in science: steps towards the realization of computer-supported discovery environments. Artificial Intelligence 91, 225–226 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rajamoney, S.A.: A computational approach to theory revision. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 225–253. Morgan Kaufmann, San Mateo (1990)Google Scholar
  8. 8.
    Karp, P.D.: Hypothesis formation as design. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 275–317. Morgan Kaufmann, San Mateo (1990)Google Scholar
  9. 9.
    Kulkarni, D., Simon, H.A.: Experimentation in machine discovery. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 255–273. Morgan Kaufmann, San Mateo (1990)Google Scholar
  10. 10.
    Gooding, D.: Experiment and the Making of Meaning. Kluwer Academic, Dordrecht (1990)Google Scholar
  11. 11.
    Stolorz, P., Cheeseman, P.: Onboard science data analysis: Applying data mining to science-directed autonomy. IEEE Intelligent Systems & Their Applications 13, 62–68 (1998)CrossRefGoogle Scholar
  12. 12.
    Gilmore, M.S., Castano, R., Mann, T., Anderson, R.C., Mjolsness, E.D., Manduchi, R., Saunders, R.: Strategies for autonomous rovers at mars. J. Geo. Phys. Res. Planets 105, 29223–29237 (2000)CrossRefGoogle Scholar
  13. 13.
    Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In: Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S. (eds.) The Third NASA/DoD Workshop on Evolvable Hardware, pp. 14–20. IEEE Comp. Soc., Los Alamitos (2001)CrossRefGoogle Scholar
  14. 14.
    Cherry, C.: On Human Communication: A Review, a Survey, and a Criticism, 2nd edn. ch. 5. MIT Press, Cambridge (1966)Google Scholar
  15. 15.
    Beyer, H.G.: The theory of Evolution Strategies. Springer, Berlin (2001)Google Scholar
  16. 16.
    Matsumaru, N., Colombano, S., Zauner, K.P.: Scouting enzyme behavior. In: Fogel, D.B., et al. (eds.) 2002 World Congress on Computational Intelligence, pp. 19–24. IEEE, Piscataway (2002)Google Scholar
  17. 17.
    Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London (1994)zbMATHGoogle Scholar
  18. 18.
    Speroni di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. movement in the lattice of organisation. The Journal of Three Dimensional Images 16, 160–163 (2002)Google Scholar
  19. 19.
    Fontana, W., Buss, L.W.: ’The arrival of the fittest’: Toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)zbMATHGoogle Scholar
  20. 20.
    Speroni di Fenizio, P., Dittrich, P., Ziegler, J., Banzhaf, W.: Towards a theory of organizations. In: German Workshop on Artificial Life, Bayreuth, April 5-7 (2000) (in print)Google Scholar
  21. 21.
    Yung, Y.L., DeMore, W.B.: Photochemistry of Planetary Atmospheres. Oxford University Press, New York (1999)Google Scholar
  22. 22.
    Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299–314 (1996)CrossRefGoogle Scholar
  23. 23.
    Fraley, C., Raftery, A.E.: MCLUST: Software for model-based clustering, discriminant analysis and density estimation. Technical Report 415, Department of Statistics, University of Washington, Seattle, WA (2002), Available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Florian Centler
    • 1
  • Peter Dittrich
    • 1
  • Lawrence Ku
    • 2
  • Naoki Matsumaru
    • 1
  • Jeffrey Pfaffmann
    • 2
  • Klaus-Peter Zauner
    • 1
  1. 1.Jena Centre for Bioinformatics (JCB) and Department of Mathematics and Computer ScienceFriedrich-Schiller-University JenaJenaGermany
  2. 2.Department of Computer ScienceWayne State UniversityDetroitU.S.A.

Personalised recommendations