Advertisement

Critical Values in Asynchronous Random Boolean Networks

  • Bertrand Mesot
  • Christof Teuscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

Wherever we see life, we see different kinds of complex networks, reason why they are studied across various fields of science. Random Boolean Networks (RBNs) form a special class in which the links between the nodes and the boolean functions are specified at random. Whereas synchronous RBNs were investigated in detail, there has little been done around their asynchronous counterpart, although there is evidence that most living systems are governed by asynchronous updating. Derrida’s annealed approximation predicts a critical connectivity value of K=2 for synchronous RBNs. We present a similar and original approach for asynchronous RBNs and show that they do not possess such a critical connectivity value. The asynchronous and nondeterministic updating scheme introduces perturbations that reach about 25% of the nodes and thus prevents the networks to become stable. Further, our numerical simulations show that asynchronous RBN tend to amplify small and to reduce big perturbations.

Keywords

Boolean Function Cellular Automaton Cellular Automaton Input Node Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allanson, J.T.: Some properties of randomly connected neural nets. In: Cherry, C. (ed.) Proceedings of the 3rd London Symposium on Information Theory, Butterworths, London, pp. 303–313 (1956)Google Scholar
  2. 2.
    Amari, S.I.: Characteristics of randomly connected threshold-element networks and network systems. Proceedings of the IEEE 59(1), 35–47 (1971)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ashby, W.R.: Design for a Brain. Wiley, New York (1956)Google Scholar
  4. 4.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R.A., Maes, P. (eds.) Proceedings of the Artificial Life IV conference, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Capcarrere, M.S.: Evolution of asynchronous cellular automata. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 903–912. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Derrida, B., Pomeau, Y.: Random networks of automata: A simple annealed approximation. Europhysics Letters 1(2), 45–49 (1986)CrossRefGoogle Scholar
  7. 7.
    Gershenson, C.: Classification of random boolean networks. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Proceedings of the Eight International Conference on Artificial Life, Artificial Life VIII. Complex Adaptive Systems Series, pp. 1–8. A Bradford Book, MIT Press (2003)Google Scholar
  8. 8.
    Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)zbMATHGoogle Scholar
  9. 9.
    Harvey, I., Bossomaier, T.: Time out of joint: Attractors in asynchronous random boolean networks. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)Google Scholar
  10. 10.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS), April 1982, vol. 79, pp. 2554–2558 (1982)Google Scholar
  11. 11.
    Hurford, J.R.: Random boolean nets and features of language. IEEE Transactions on Evolutionary Computation 5(2), 111–116 (2001)CrossRefGoogle Scholar
  12. 12.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected genetic nets. Journal of Theoretical Biology 22, 437–467 (1968)CrossRefGoogle Scholar
  13. 13.
    Kauffman, S.A.: The Origins of Order: Self–Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  14. 14.
    Milo, R., She-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  15. 15.
    Di Paolo, E.A.: Rhythmic and non-rhythmic attractors in asynchronous random boolean networks. Biosystems 59(3), 185–195 (2001)CrossRefGoogle Scholar
  16. 16.
    Rozonoér, L.I.: Random logical nets I. Automation and Remote Control 5, 773–781 (1969); Translation of Avtomatika i TelemekhanikaGoogle Scholar
  17. 17.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51(3), 123–143 (1999)CrossRefGoogle Scholar
  18. 18.
    Sporns, O., Tononi, G.: Classes of network connectivity and dynamics. Complexity 7(1), 28–38 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Stark, W.R., Hughes, W.H.: Asynchronous, irregular automata nets: The path not taken. BioSystems 55(1-3), 107–117 (2000)CrossRefGoogle Scholar
  20. 20.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  21. 21.
    Teuscher, C.: Turing’s Connectionism. In: An Investigation of Neural Network Architectures, September 2001. Springer, London (2001)Google Scholar
  22. 22.
    Weisbuch, G.: Complex Systems Dynamics: An Introduction to Automata Networks. Lecture Notes, Santa Fe Institute, Studies in the Sciences of Complexity, vol. 2. Addison-Wesley, Redwood City (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bertrand Mesot
    • 1
  • Christof Teuscher
    • 1
  1. 1.Logic Systems LaboratorySwiss Federal Institute of Technology (EPFL)LausanneSwitzerland

Personalised recommendations