Distributed Genetic Algorithm: Learning by Direct Exchange of Chromosomes

  • Aleš Kubík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


Genetic algorithms is a technique widely used to evolve controllers of agents or robots in dynamic environments. In this paper we describe a modification to a single-robot-based evolution of a controller – a distributed parallel genetic algorithm where the pool of chromosomes is dispersed over a multi-robot society. Robots share their experience in solving the task by direct exchange of individually evolved successful strategies coded by chromosomes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braitenberg, V.: Vehicles. In: Experiments in Synthetic Psychology, MIT Press, Cambridge (1984)Google Scholar
  2. 2.
    Floreano, D., Mondada, F.: Automatic Creation of an Autonomous Agent: Genetic Evolution of a Neural Network Driven Robot. In: Cliff, D., Husbands, P., Meyer, J., Wilson, S. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior, From Animals to Animats III, pp. 402–410. MIT Press-Bradford Books (1994)Google Scholar
  3. 3.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Redwood City (1989)zbMATHGoogle Scholar
  4. 4.
    Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  5. 5.
    Kelemen, J., Kubík, A.: RADIUS: Looking for Robot’s Help in Computer Science Research and Education. ERCIM News (51), 48–49 (2002)Google Scholar
  6. 6.
    Mondada, F., Franzi, E., Ienne, P.: Mobile Robot Miniaturization: A Tool for Investigation in Control Algorithms. In: Proceedings of the Third International Symposium on Experimental Robotics, Kyoto, Japan (1993)Google Scholar
  7. 7.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Nolfi, S., Floreano, D.: Co-evolving Predator and Prey Robots: Do ’Arm Races’ Arise in Artificial Evolution? Artificial Life 4(4), 311–335 (1998)CrossRefGoogle Scholar
  9. 9.
    Quinn, M.: Evolving Communication Without Dedicated Communication Channels. In: Kelemen, J., Sosík, P. (eds.) Proceedings of the. 6th European Conference on Artificial Life, Advances in Artificial Life, pp. 357–366. Springer, Berlin (2001)Google Scholar
  10. 10.
    Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving Teamwork and Role- Allocation with Real Robots. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Proceedings of the Eighth International Conference on Artificial Life, pp. 302–311. MIT Press, Cambridge (2002)Google Scholar
  11. 11.
    Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied Evolution: Embodying an Evolutionary Algorithm in a Population of Robots. In: Angeline, M., Schoenauer, Y., Zalzala (eds.) 1999 Congress on Evolutionary Computation, pp. 335–342. IEEE Press, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Aleš Kubík
    • 1
  1. 1.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic

Personalised recommendations