Advertisement

Population Dynamics under Spatially and Temporally Heterogenous Resource Limitations in Multi-agent Networks

  • Thomas Glotzmann
  • Holger Lange
  • Michael Hauhs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

An individual-based agent model is presented which resembles aspects of natural evolution in ecosystems under selective pressure due to limited resources. The environmental conditions are determined by spatial and temporal variability of resource abundances. The agents have to choose between three different types of resources; the one consumed most during lifetime solely counts for the fitness of the individual agent. Simulation runs show that populations specialized in different resource types are mutually influencing each other under temporal variation of a single resource type. Mobility of agents in a locally heterogenous world enables recolonization after a population has starved to death. Wavelet analysis of the population time series reveals that some observed population dynamics show phenomena such as localized periodicities which cannot be explained by linear dependencies on the resource input dynamics.

Keywords

Wavelet Analysis Resource Abundance Resource Type Original Time Series Sine Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedau, M.A., Snyder, E., Packard, N.H.: A Classification of Long-Term Evolutionary Dynamics. In: Artificial Life VI. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G.: Eco-Grammar Systems: A Grammatical Framework for Studying Lifelike Interactions. Artificial Life 3, 1–28 (1997)CrossRefGoogle Scholar
  3. 3.
    Ferber, J.: Multi-agent systems. In: An Introduction to Distributed Artificial Intelligence, Addison-Wesley, Reading (1999)Google Scholar
  4. 4.
    Glotzmann, T., Lange, H., Hauhs, M., Lamm, A.: Evolving Multi-Agent Networks in Structured Environments. In: Kelemen, J., Sosik, P. (eds.) Advances in Artificial Life, pp. 110–119. Springer, Berlin (2001)CrossRefGoogle Scholar
  5. 5.
    Glotzmann, T.: Ein agentenbasiertes Simulationssystem zur Entwicklung ökosystemarer Szenarien in strukturierten Umgebungen. In: Bayreuther Forum Ökologie, Bayreuth (2003) (to appear)Google Scholar
  6. 6.
    Hipel, K., McLeod, A.: Time series modelling of water resources and environmental systems. Elsevier, Amsterdam (1994)Google Scholar
  7. 7.
    Hraber, P.T., Jones, T., Forrest, S.: The Ecology of Echo. Artificial Life 3, 165–190 (1997)CrossRefGoogle Scholar
  8. 8.
    Schmid, T.: Evolutionäre Anpassungen in einem verteilten Multi-Agenten-System. Diplom Thesis, Univ. Bayreuth (2001)Google Scholar
  9. 9.
    Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of Cycles in Symbolic Chemical System based on Abstract Rewriting System on Multisets. In: Artificial Life V, pp. 522–528. MIT press, Cambridge (1997)Google Scholar
  10. 10.
    Torrence, C., Compo, G.P.: A Practical Guide to Wa velet Analysis. Bulletin of the American Meteorological Society, 61–78 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Glotzmann
    • 1
  • Holger Lange
    • 2
  • Michael Hauhs
    • 1
  1. 1.Bayreuther Institut für Terrestrische Ökosystemforschung (BITÖK)University of BayreuthBayreuthGermany
  2. 2.Norwegian Forest Research Institute (Skogforsk)ÅsNorway

Personalised recommendations