Evolving Embodied Genetic Regulatory Network-Driven Control Systems

  • Tom Quick
  • Chrystopher L. Nehaniv
  • Kerstin Dautenhahn
  • Graham Roberts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


We demonstrate the evolution of simple embodied Genetic Regulatory Networks (GRNs) as real-time control systems for robotic and software-based embodied Artificial Organisms, and present results from two experimental test-beds: homeostatic temperature regulation in an abstract software environment, and phototactic robot behaviour maximising exposure to light. The GRN controllers are continually coupled to the organisms’ environments throughout their lifetimes, and constitute the primary basis for the organisms’ behaviour from moment to moment. The environment in which the organisms are embodied is shown to play a significant role in the dynamics of the GRNs, and the behaviour of the organisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidson, E.H.: Genomic Regulatory Systems: Development and Evolution. Academic Press, London (2001)Google Scholar
  2. 2.
    Arthur, W.: The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology, Cambridge (2000)Google Scholar
  3. 3.
    Alberts, B., et al.: Molecular Biology of the Cell, 4th edn. Garland, New York (2002)Google Scholar
  4. 4.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Reil, T.: Dynamics of gene expression in an artificial genome—implications for biological and artificial ontogeny. In: [21], pp. 457–466Google Scholar
  6. 6.
    de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dellaert, F., Beer, R.: A developmental model for the evolution of complete autonomous agents. In: Maes, P., et al. (eds.) From Animals to Animats 4: Proc. 4th Int. Conf. on Simulation of Adaptive Behaviour, pp. 393–401. MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural networks. Artificial Life 6, 189–218 (2000)CrossRefGoogle Scholar
  9. 9.
    Bongard, J.C.: Evolving modular genetic regulatory networks. In: Proc. IEEE 2002 Congress on Evo. Comp., pp. 1872–1877. IEEE Press, Los Alamitos (2002)Google Scholar
  10. 10.
    Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) Proc. 4th European Conf. on Artificial Life, pp. 205–213. MIT Press, Cambridge (1997)Google Scholar
  11. 11.
    Kumar, S., Bentley, P.J.: Biologically inspired evolutionary development. In: Proc. 5th Int. Conf. on Evolvable Systems: From Biology to Hardware. LNAI. Springer, Heidelberg (to appear) Google Scholar
  12. 12.
    Gilbert, S.: Ecological developmental biology: Developmental biology meets the real world. Developmental Biology 233, 1–12 (2001)CrossRefGoogle Scholar
  13. 13.
    Bolker, J.A.: From genotype to phenotype: Looking into the black box. In: Kumar, S., Bentley, P. (eds.) On growth, form and computers. Academic Press, London (to appear)Google Scholar
  14. 14.
    Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artificial Life 7, 171–190 (2001)CrossRefGoogle Scholar
  15. 15.
    Weiss, R., et al.: Genetic circuit building blocks for cellular computation, communications, and signal processing. Natural Computing: An Int. Journal 2 (2003)Google Scholar
  16. 16.
    Quick, T., Dautenhahn, K., Nehaniv, C.L., Roberts, G.: On bots and bacteria: Ontology independent embodiment. In: [21] 339–343Google Scholar
  17. 17.
    Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition. D. Reidel, Dordrechtz (1980)Google Scholar
  18. 18.
    Beer, R.D.: A dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72, 173–215 (1995)CrossRefGoogle Scholar
  19. 19.
    Ptashne, M.: A Genetic Switch: Phage Lambda and Higher Organisms. Blackwell Science, Malden (1992)Google Scholar
  20. 20.
    Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)Google Scholar
  21. 21.
    Floreano, D., Nicoud, J.D., Mondada, F. (eds.): ECAL 1999. LNCS (LNAI), vol. 1674. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tom Quick
    • 1
  • Chrystopher L. Nehaniv
    • 2
  • Kerstin Dautenhahn
    • 2
  • Graham Roberts
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonLondonU.K.
  2. 2.Adaptive Systems Research GroupUniversity of HertfordshireHatfield, HertsU.K.

Personalised recommendations