Effects of Group Composition and Level of Selection in the Evolution of Cooperation in Artificial Ants

  • Andres Perez-Uribe
  • Dario Floreano
  • Laurent Keller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


Since ants and other social insects have long generation time, it is very difficult for biologists to study the origin of complex social organization by guided evolution (a process where the evolution of a trait can be followed during experimental evolution). Here we use colonies of artificial ants implemented as small mobile robots with simple vision and communication abilities to explore these issues. In this paper, we present results concerning the role of relatedness (genetic similarity) and levels of selection (individual and colony-level selection) on the evolution of cooperation and division of labor in simulated ant colonies. In order to ensure thorough statistical analysis, the evolutionary experiments, herein reported, have been carried out using “minimalist” simulations of the collective robotics evolutionary setup. The results show that altruistic behaviors have low probability of emerging in heterogeneous colonies evolving under individual-level selection and that colonies with high genetic relatedness display better performance.


Evolution cooperation division of labor altruism social insects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hölldobler, B., Wilson, E.: The Ants. Springer, Berlin (1990)Google Scholar
  2. 2.
    Gadagkar, R.: Survival strategies: cooperation and conflict in animal societies. Harvard University Press, Cambridge (1997)Google Scholar
  3. 3.
    Wheeler, W.: The social insects: their origin and evolution. Kegan Paul, London (1928)Google Scholar
  4. 4.
    Hamilton, W.: The genetical evolution of social behavior 2. Journal of Theoretical Biology 7, 17–52 (1964)CrossRefGoogle Scholar
  5. 5.
    Keller, L., Reeve, H.: Dynamics of conflicts within insect societies. In: Levels of Selection in Evolution, pp. 153–175. Princeton University Press, Princeton (1999)Google Scholar
  6. 6.
    Ratnieks, F., Reeve, H.: Conflict in single-queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. Journal of Theoretical Biology 158, 33–65 (1992)CrossRefGoogle Scholar
  7. 7.
    Bourke, A., Franks, N.: Social evolution in ants. Princeton University Press, Princeton (1995)Google Scholar
  8. 8.
    Sundström, L., Chapuisat, M., Keller, L.: Manipulation of sex ratios by ant workers: A test of kin selection theory. Science 274, 993–995 (1996)CrossRefGoogle Scholar
  9. 9.
    Krieger, M., Billeter, J., Keller, L.: Ant-like task allocation and recruitment in co-operative robots. Nature 406, 992–995 (2000)CrossRefGoogle Scholar
  10. 10.
    Brooks, R.: Challenges for complete creature architectures. In: Meyer, J.A., Wilson, S. (eds.) From animals to animats. First International Conference on Simulation of Adaptive Behavior, pp. 434–443. The MIT Press, Cambridge (1991)Google Scholar
  11. 11.
    Dugatkin, L., Reeve, H. (eds.): Game Theory and Animal Behavior. Oxford University Press, Oxford (1998)Google Scholar
  12. 12.
    Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211, 1390–1396 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pepper, J., Smuts, B.: The evolution of cooperation in an ecological context: an agent-based model. In: Kohler, T.A., Gumerman, G.J. (eds.) Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes, pp. 45–76. Oxford University Press, Oxford (2000)Google Scholar
  14. 14.
    Caprari, G., Estier, T., Siegwart, R.: Fascination of down scaling - alice the sugar cube robot. Journal of Micro-Mechatronics 1, 177–189 (2002)Google Scholar
  15. 15.
    Bonabeau, E., Theraulaz, G., Schatz, B., Deneubourg, J.L.: Response threshold model of division of labour in a ponerine ant. Proc. Roy. Soc. London B 265, 327–335 (1998)CrossRefGoogle Scholar
  16. 16.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. The Biology, Intelligence, and Technology of Self-organizing Machines. The MIT Press, Cambridge, Massachusetts (1999) Google Scholar
  17. 17.
    Keller, L., Ross, K.: Selfish genes: a green beard in the red fire ant. Nature 394, 573–575 (1998)CrossRefGoogle Scholar
  18. 18.
    Keller, L., Chapuisat, M.: Cooperation among selfish individuals in insect colonies. BioScience 49, 899–909 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Andres Perez-Uribe
    • 1
  • Dario Floreano
    • 1
  • Laurent Keller
    • 2
  1. 1.Autonomous Systems Lab.Swiss Federal Institute of TechnologyLausanneSwitzerland
  2. 2.Institute of Ecology, Laboratory for ZoologyUniversity of LausanneSwitzerland

Personalised recommendations