Advertisement

Abstract

The Internet’s inter-domain routeing system has evolved to keep pace with the Internet’s rapid growth, from a few co-operatively managed administrative domains to a large number of competetive domains. This growth has brought to light one of the Internet’s shortcomings: lack of support for efficient control and management of traffic, particularly between domains. This paper presents an extension to BGP, the inter-domain routeing protocol, that enables congestion to drive route selection and thus allows economic incentives to play their part in traffic distribution. Implementation in a deployed BGP stack is discussed and a simple simulation presented, showing better traffic distribution.

Keywords

Route Selection Route Protocol Internet Protocol Address Border Gateway Protocol Path Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xiao, X., Hannan, A., Bailey, B., Ni, L.M.: Traffic engineering with MPLS in the Internet. IEEE Network Magazine 14(2), 28–33 (2000)CrossRefGoogle Scholar
  2. 2.
    Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4). RFC 1771, IETF (March 1995) Google Scholar
  3. 3.
    Stewart III., J.W.: BGP4 Inter-Domain Routing in the Internet. Addison Wesley Longman, Amsterdam (1999)Google Scholar
  4. 4.
    Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration. In: Proceedings of ACM SIGCOMM 2002 (August 2002)Google Scholar
  5. 5.
    OSI IS-IS Intra-domain Routing Protocol. RFC 2, IETF (Febraury 1990) Google Scholar
  6. 6.
    Callon, R.W.: Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC 1195, IETF (December 1990) Google Scholar
  7. 7.
    Moy, J.: OSPF Version 2. RFC 2328, IETF (April 1998) Google Scholar
  8. 8.
    Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights. In: Proceedings of IEEE Infocom 2000, Tel Aviv, Israel (March 2000)Google Scholar
  9. 9.
    Villamizar, C.: OSPF optimized multipath (OSPF-OMP). In: Proceedings of the Forty-Fourth Internet Engineering Task Force, IETF (March 1999), available as Internet Draft draft-ietf-ospf-omp-02Google Scholar
  10. 10.
    Griffin, T., Wilfong, G.T.: An analysis of BGP convergence properties. Computer Communication Review (CCR) 29(4), 277–288 (1999); Proceedings of ACM SIGCOMM 1999CrossRefGoogle Scholar
  11. 11.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing convergence. Computer Communication Review (CCR) 30(4), 175–187 (2000); Proceedings of ACM SIGCOMM 2000CrossRefGoogle Scholar
  12. 12.
    Gao, L., Griffin, T., Rexford, J.: Inherently safe backup routing with BGP. In: Proceedings of IEEE Infocom 2001, Anchorage, Alaska, April 2001, pp. 547–556 (2001)Google Scholar
  13. 13.
  14. 14.
  15. 15.
    DML Networks, Inc., The GNU Zebra Routeing Protocol Suite,(2002), http://www.zebra.org/
  16. 16.
    Villamizar, C., Chandra, R., Govindan, R.: BGP Route Flap Damping. RFC 2439, IETF (November 1998) Google Scholar
  17. 17.
    Mortier, R.: Internet traffic engineering. Tech. Rep. UCAM-CL-TR-532, University of Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, (April 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Richard Mortier
    • 1
  • Ian Pratt
    • 2
  1. 1.Microsoft Research Ltd.CambridgeUK
  2. 2.University of Cambridge Computer LabCambridgeUK

Personalised recommendations