Skip to main content

Image Contrast and Signal Processing

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

The most important topographic contrast mode with secondary electrons is a consequence of the dependence of the SE yield on the local tilt of the specimen surface. A fraction of the SE signal is excited by the primary electron probe and carries high-resolution information since the exit depth of the SE is small. Another fraction of poorer resolution is excited by the BSE. If, instead of using the conventional SE detector, the SE are sorted according to their exit momenta, a more quantitative interpretation of the topography may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Böngeler, U. Golla, M. Kässens, L. Reimer, B. Schindler, R. Senkel, M. Spranck: Electron-specimen interactions in LVSEM. Scanning 15, 1 (1993)

    Google Scholar 

  2. M. Lange. L. Reimer, C. Tollkamp: Testing of detector strategies in SEM by isodensities. J.Microsc. 134, 1 (1984)

    Google Scholar 

  3. D.K. Hindermann, R.H. Davis: SEM techniques for the examination of blind and through holes. SEM 1974 ( ITTRI, Chicago 1974 ) p. 183

    Google Scholar 

  4. A.E. Lukianov, G.V. Spivak, E.I. Rau, D.D. Gorodsky: The secondary electron SEM-collector with magnetic field. In Electron Microscopy 1972 ( IoP, London 1972 ) p. 186

    Google Scholar 

  5. K. Saito, M. Yoshizawa, K. Wada: A SEM for trench observation. J. Vac. Sci. Techn. B 8, 1152 (1990)

    Google Scholar 

  6. ] H. Nakagawa, N. Nomura, T. Koizumi, N. Anazawa, K. Harafuji: A novel high-resolution SEM for the surface analysis of high-aspect-ratio three-dimensional structures. Jpn. J. Appl. Phys. 30 2112 (1991)

    Google Scholar 

  7. K. Schur, Ch. Schulte, L. Reimer: Auflösungsvermögen and Kontrast von Oberflächenstufen bei der Abbildung mit einem Raster-Elektronenmikroskop. Z. Angew. Phys. 23, 405 (1967)

    Google Scholar 

  8. G. Pfefferkorn, R. Blaschke: Der Informationsgehalt rasterelektronenmikroskopischer Aufnahmen. Beitr. elektr. mikr. Direktabb. Oberfl. 1, 1 (1968)

    Google Scholar 

  9. N.S. Griffin: Enhanced topography imaging in the SEM. Meas. Sci. Techn. 5, 1403 (1994)

    ADS  Google Scholar 

  10. ] R.H. Milne: Surface steps imaged by SE. Ultramicroscopy 27 433 (1989)

    Google Scholar 

  11. L. Reimer, M. Riepenhausen, C. Tollkamp: Detector strategy for improvement of image contrast analogous to light illumination. Scanning 6, 155 (1984)

    Google Scholar 

  12. C. Le Gressus, H. Okuzumi, D. Massignon: Changes of SEI brightness under electron irradiation as studied by electron spectroscopy. SEM 1981/I ( SEM Inc., AMF O’Hare, IL 1981 ) p. 251

    Google Scholar 

  13. O. Lee-Deacon, C. Le Gressus, D. Massignon: Analytical SEM for surface science. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 271

    Google Scholar 

  14. A. Howie: Recent developments in SE imaging. J. Microsc. 180, 192 (1995)

    Google Scholar 

  15. C.A. Walsh: Effect of specimen bias on SE images in the STEM. Ultramicroscopy 45, 85 (1992)

    Google Scholar 

  16. R. Persaud, H. Moro, M. Azim, R.H. Milne, J.A. Venables: Recent surface studies using biassed SE imaging. Scanning Microscopy 8, 803 (1994)

    Google Scholar 

  17. Y. Homma, M. Suzuki, M. Tomita: Atomic configuration dependent SE emission from reconstructed silicon surfaces. Appl. Phys. Lett. 62, 3276 (1993)

    ADS  Google Scholar 

  18. H.W. Ren, M. Tanaka, T. Nishinaga: Real time observation of reconstruction transitions on GaAs(111)B surface by SEM. Appl. Phys. Lett. 69, 565 (1996)

    ADS  Google Scholar 

  19. M. Aven, J.Z. Devine, R.B. Bolon. G.W. Ludwig: SEM and cathodoluminescence of ZnSe,xTei_,x p-n junctions. J. Appl. Phys. 43, 4136 (1972)

    ADS  Google Scholar 

  20. silicon carbides. J. Mater. Sci. 13, 885 (1978)

    ADS  Google Scholar 

  21. D.D. Perovic, M.R. Castell, A. Howie, C. Lavoie, T. Tiedje, J.S.W. Cole: Field-emisison SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58, 104 (1995)

    Google Scholar 

  22. D. Venables, D.M. Maher: Quantitative two-dimensional dopant profiles obtained directly from SE images. J. Vac. Sci. Techn. B 14, 421 (1996)

    Google Scholar 

  23. L. Reimer: Electron signal and detector strategy. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 299

    Google Scholar 

  24. L. Reimer: SEM of surfaces. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt (1982) p. 79

    Google Scholar 

  25. L. Reimer, B. Volbert: Detector system for backscattered electrons by conversion to secondary electrons. Scanning 2, 238 (1979)

    Google Scholar 

  26. K.H. Peters: Conditions required for high quality high magnification images in secondary electron-I SEM. SEM 1982/IV ( SEM Inc., AMF O’Hare, IL 1982 ) p. 1359

    Google Scholar 

  27. B. Volbert, L. Reimer: Advantages of two opposite Everhart—Thornley detectors in SEM. SEM 1980/IV ( SEM Inc., AMF O’Hare, IL 1980 ) p. 1

    Google Scholar 

  28. M. Kässens, L. Reimer: Contrast effects using a two-detector system in LVSEM. J. Microsc. 181, 277 (1996)

    Google Scholar 

  29. L. Reimer, C. Tollkamp: Recording of topography by secondary electrons with a two-detector system. In Electron Microscopy 1982, Vol. 2 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 543

    Google Scholar 

  30. L. Reimer, R. Böngeler, V. Desai: Shape from shading using multiple detector signals in SEM. Scanning Microscopy 1, 963 (1987)

    Google Scholar 

  31. B. Volbert: True surface topography: the need for signal mixing. In Electron Microscopy 1982, Vol. 2 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 233

    Google Scholar 

  32. P.S.D. Lin, R.P. Becker: Detection of BSE with high resolution. SEM 1975 ( ITTRI, Chicago 1975 ) p. 61

    Google Scholar 

  33. J.L. Abraham, P.B. DeNee: Biomedical applications of BSE imaging — one year’s experience with SEM histochemistry. SEM 1974 ( ITTRI, Chicago 1974 ) p. 251

    Google Scholar 

  34. R.P. Becker, M. Sogard: Visualization of subsurface structures in cells and tissues by BSE imaging. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 835

    Google Scholar 

  35. R.G. Richards, I. A. Gwynn: BSE imaging of the undersurface of resinembedded cells by field-emission SEM. J. Microsc. 177, 43 (1995)

    Google Scholar 

  36. J. Brostin: Compositional imaging of polymers using a field emission SEM with a microchannel plate BSE detector. Scanning 17, 327 (1995)

    Google Scholar 

  37. B. Ocker, R. Wurster, H. Seiler: Investigation of nanoparticles in high resolution SEM and LVSEM by digital image analysis. Scanning Microscopy 9, 63 (1995)

    Google Scholar 

  38. P. Hirsch, M. Kässens, L. Reimer, R. Senkel, M. Spranck: Contrast of colloidal gold particles and thin films on a silicon substrate oberved by BSE in a LVSEM. Ultramicroscopy 50, 263 (1993)

    Google Scholar 

  39. L. Reimer, W. Pöpper, W. Bröcker: Experiments with a small solid angle detector for BSE. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 705

    Google Scholar 

  40. O.C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 293

    Google Scholar 

  41. O.C. Wells: Effects of collector take-off angle and energy filtering on the BSE image in the SEM. Scanning 2, 199 (1979)

    Google Scholar 

  42. R. Christenhuß: Zur Darstellbarkeit kristalliner Objekte in der AuflichtElektronenmikroskopie. Beitr. elektr. mikr. Direktabb. Oberft. 1, 67 (1968)

    Google Scholar 

  43. J. Philibert, R. Tixier: Effects of crystal contrast in SEM. Micron 1, 174 (1969)

    Google Scholar 

  44. D.C. Joy, D.E. Newbury, P.M. Hazzledine: Anomalous crystallographic contrast on rolled and annealed specimens. SEM 1972 ( ITTRI, Chicago 1972 ) p. 97

    Google Scholar 

  45. P.F. Schmidt, H.G. Grewe, G. Pfefferkorn: SEM imaging of the cell structure of dislocation networks in cold worked Cu single crystals. Scanning 1, 174 (1978)

    Google Scholar 

  46. H. Seiler: Determination of the “information depth” in the SEM. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 9

    Google Scholar 

  47. D.J. Prior, P.W. Trimby, U.D. Weber: Orientation contrast imaging of microstructures in rocks using forescatter detectors in the SEM. Mineral. Mag. 60, 859 (1996)

    Google Scholar 

  48. L. Reimer, B. Volbert: The origin and correction of SEM imaging artifacts arising from the use of the difference signal of two detectors. Philips Electron Optics Bulletin No. 118 ( Philips, Eindhoven 1982 )

    Google Scholar 

  49. M.D. Ball, D.G. McCartney: The measurement of atomic number and composition in an SEM using BSE detectors. J. Microsc. 124, 57 (1981)

    Google Scholar 

  50. D. Weirauch: Quantitative Auswertung der Intensität der Rückstreuelektronen am Rasterelektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 26, 7 (1993)

    Google Scholar 

  51. P. Roschger, H. Plenk, K. Klaushofer, J. Eschberger: A new SEM approach to the quantification of bone mineral distribution — BSE image grey levels correlated to calcium Kc -line intensities. Scanning Microscopy 9, ‘75 (1995)

    Google Scholar 

  52. H. Niedrig: BSE as a tool for film thickness determination. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 841

    Google Scholar 

  53. O.C. Wells, R.J. Savoy, P.J. Bailey: BSE imaging in the SEM — measurement of surface-layer mass—thickness. In Electron Beam Interaction with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, IL 1982 ) p. 287

    Google Scholar 

  54. P.B. DeNee: Measurement of mass and thickness of respirable size dust particles by SEM BSE imaging. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 741

    Google Scholar 

  55. J. Lebiedzik, E.W. White: Multiple detector method for quantitative determination of microtopography in the SEM. SEM 1975 ( ITTRI, Chicago 1975 ) p. 181

    Google Scholar 

  56. J. Lebiedzik, J. Lebiedzik, R. Edwards, B. Phillips: Use of microtopography capability in the SEM for analysing fracture surfaces. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 61

    Google Scholar 

  57. I.C. Carlsen: Reconstruction of true surface-topographies in SEM using BSE. Scanning 7, 169 (1985)

    Google Scholar 

  58. W. Bell, I.C. Carlsen, V. Desai, L. Reimer: Three-dimensional digital surface reconstruction in SEM using signals of a multiple detector system. Europ. J. Cell Biology (Suppl. 25 ) 48, 13 (1989)

    Google Scholar 

  59. D.A. Wassink, J.Z. Raski, J.A. Levitt, D. Hildreth, K.C. Ludema: Surface topographical and compositional characterization using BSE methods. Scanning Microscopy 5, 919 (1991)

    Google Scholar 

  60. A.R. Walker, G.R. Booker: A simple energy filtering BSE detector. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ), p. 119

    Google Scholar 

  61. O.C. Wells: Low-loss image for surface SEM. Appl. Phys. Lett. 19, 232 (1971)

    ADS  Google Scholar 

  62. P. Morin, M. Pitaval, D. Besnard, G. Fontaine: Electron-channelling imaging in SEM. Phil. Mag. A 40, 511 (1979)

    ADS  Google Scholar 

  63. O.C. Wells, A.N. Broers, C.G. Bremer: Method for examining solid specimens with improved resolution in the SEM. Appl. Phys. Lett. 23, 353 (1973)

    ADS  Google Scholar 

  64. O.C. Wells: Explanation of the low-loss image in the SEM in terms of electron scattering theory. SEM 1972 ( ITTRI, Chicago 1972 ) p. 169

    Google Scholar 

  65. J.P. Spencer, C.J. Humphreys, P.B. Hirsch: A dynamical theory for the contrast of perfect and and imperfect crystals in the SEM using BSE. Phil. Mag. 26, 193 (1972)

    ADS  Google Scholar 

  66. ] R.M. Stern, T. Ichinokawa, S. Takashima, H. Hashimoto, S. Kimoto: Dislocation images in the high resolution SEM. Phil. Mag. 26, 1495 (1972) [

    Google Scholar 

  67. G.R. Booker, D.C. Joy, J.P. Spencer, C.J. Humphreys: Imaging of crystal defects in the SEM. SEM 1973 ( ITTRI, Chicago 1973 ) p. 251

    Google Scholar 

  68. P. Morin, M. Pitaval, E. Vicario, G. Fontaine: SEM observation of single defects in solid crystalline materials. Scanning 2, 217 (1979)

    Google Scholar 

  69. D.E. Newbury: The utility of specimen current imaging in the SEM. SEM 1976/I ( ITTRI, Chicago 1976 ) p. 111

    Google Scholar 

  70. P. Echlin, G. Kaye: Thin films for high resolution conventional SEM. SEM 1979/I1 ( SEM Inc., AMF O’Hare, IL 1979 ) p. 21

    Google Scholar 

  71. J.D. Geller, T. Yoshioka, D.A. Hurd: Coating by ion sputtering for ultrahigh resolution SEM. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 355

    Google Scholar 

  72. K.R. Peters: SEM at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 133

    Google Scholar 

  73. K.R. Peters: Metal deposition by high energy sputtering for high magnification electron microscopy. In Advanced Techniques in Biological Electron Microscopy III, ed. by J.K. Koehler ( Springer, Berlin, Heidelberg 1986 ) p. 101

    Google Scholar 

  74. R. Hermann, M. Müller: High resolution biological SEM: a comparative study of low temperature coating techniques. J. Electron Microsc. Techn. 18, 440 (1991)

    Google Scholar 

  75. R. Wepf, M. Amrein, U. Bürkli, H. Gross: Platinum/iridium/carbon: a high-resolution shadowing material for TEM, SIM and SEM of biological macromolecular structure. J. Microsc. 163, 51 (1991)

    Google Scholar 

  76. P. Walther, E. Wehrli, R. Hermann, M. Müller: Double-layer coating for high-resolution low-temperature SEM. J. Microsc. 179, 229 (1995)

    Google Scholar 

  77. T. Nakadera, A. Mitsushima, K. Tanaka: Application of high-resolution SEM to biological macromolecules. J. 1\-licrosc. 163, 43 (1991)

    Google Scholar 

  78. O.C. Wells: BSE image in the SEM. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 747

    Google Scholar 

  79. P.G. Merli, M. Nacucci: Resolution of superlattice structures with BSE in a SEM. Ultramicroscopy 50, 83 (1993)

    Google Scholar 

  80. L. Reimer, P. Wahlbring: Monte-Carlo simulation of imaging cross-section of layered structures by BSE. In Electron Microscopy, Vol. 1, ed. by B. Jouffrey and C. Colliex ( Les éditions de Physique, Les Ulis, France 1994 ) p. 355

    Google Scholar 

  81. L. Reimer, M. Kässens, L. Wiese: Monte Carlo simulation program with a free configuration of specimen and detector geometries. In Micro beam and Nanobeam Analysis, ed. by D. Benoit et al., Mikrochim. Acta [Suppl.] 13, 485 (1996)

    Google Scholar 

  82. B.H. Fishbine, R.J. Macy: First results with a high-imaging-speed SEM. Rev. Sci. Instr. 61, 2534 (1990)

    ADS  Google Scholar 

  83. B. Dunger, D. Schmidt: Zum Einfluß der Bildröhre auf den Kontrast in REM-Bildern. Beitr. elektr. mikr. Direktabb. Oberft. 4 /2, 381 (1971)

    Google Scholar 

  84. H. Hantsche: Systematische Fehler bei Rasterabbildungen als Folge endlichen Strahldurchmessers. Beitr. elektr. mikr. Direktabb. Oberft. 3, 371 (1970)

    Google Scholar 

  85. J. Bahr, B. Dunger, W. Schwarz: Zum Einfluß von Rastergrößen auf die Schärfentiefe beim Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 3, 379 (1970)

    Google Scholar 

  86. E. Oho. N. Ichise, T. Ogashiwa: Proper acquisition and handling of SEM images using a high-performance personal computer. Scanning 18, ‘72 (1996)

    Google Scholar 

  87. G.A.C. Jones, H. Ahmed, W.C. Nixon: Large field SEM. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 65

    Google Scholar 

  88. K. Schur: Ein Moiré-Effekt im Raster-Elektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 3, 143 (1970)

    Google Scholar 

  89. ] C.E. Fiori, H. Yakowitz, D.E. Newbury: Some techniques of signal processing in SEM. SEM 1974 (ITTRI, Chicago 1974) p.16’7

    Google Scholar 

  90. L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultramicroscopy 2, 297 (1977)

    Google Scholar 

  91. J.P. Flemming: The display of information from scanned measuring systems by contour mapping. J. Phys. E 2, 93 (1969)

    ADS  Google Scholar 

  92. P.R. Thornton, D.V. Sulway, D.A. Shaw: SEM in device diagnostics and reliability. IEEE Trans. ED-16, 360 (1969)

    Google Scholar 

  93. M.C. Bagget, L.H. Glassman: SEM image processing by analog homomorphic filtering techniques. SEM 1974 ( ITTRI, Chicago 1974 ) p. 199

    Google Scholar 

  94. L.J. Balk, E. Kubalek, E. Menzel: Untersuchung von GaAlAs-Elektrolumineszenzdioden im Rasterelektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberft. 7, 245 (1974)

    Google Scholar 

  95. M.T. Postek, A.E. Vladâr: Digital imaging for SEM. Scanning 18, 1 (1996)

    Google Scholar 

  96. T.J. Pitt: Application of array processor to image processing in electron microscopy. J. Microsc. 127, 85 (1982)

    Google Scholar 

  97. B. Jähne: Digital Image Processing (Springer, Berlin, Göttingen Heidelberg 1993 )

    Google Scholar 

  98. T.S. Huang: Picture Processing and Digital Filtering, 2nd edn., Topics Appl. Phys. Vol. 6 ( Springer, Berlin, Heidelberg 1979 )

    Google Scholar 

  99. W.K. Pratt: Digital Image Processing ( Wiley, New York 1991 )

    MATH  Google Scholar 

  100. A. Rosenfeld, A.C. Kak: Digital Picture Processing, 2nd edn., Vol.1,2 ( Academic, New York 1982 )

    Google Scholar 

  101. J.C. Russ: The Image Processing Handbook, 2nd edn. ( CRC Press, London 1995 )

    Google Scholar 

  102. A.V. Jones, K.C.A. Smith: Image processing for scanning microscopists. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 13

    Google Scholar 

  103. K.C.A. Smith: On-line digital computer techniques in electron microscopy: general introduction. J. Microsc. 127, 3 (1982)

    Google Scholar 

  104. P.W. Hawkes, E. Kasper: Principles of Electron Optics, Vol. 3, Wave Optics ( Academic, London 1994 )

    Google Scholar 

  105. P.W. Hawkes: Processing electron images. In Quantitative Electron Microscopy, ed. by J.N. Chapman and A.J. Craven ( Scottish Univ. Summer School in Physics, Edinburgh 1984 ) p. 351

    Google Scholar 

  106. E. Oho, N. Ichise, W.H. Martin, K.R. Peters: Practical method for noise removal in SEM. Scanning 18, 50 (1996)

    Google Scholar 

  107. H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2nd edn., Springer Ser. Inf. Sci., Vol. 2 ( Springer, Berlin, Heidelberg 1982 )

    Google Scholar 

  108. L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978)

    Google Scholar 

  109. S.J. Erasmus, D.M. Holburn, K.C.A. Smith: On-line computation of diffractograms for the analysis of SEM images. Scanning 3, 273 (1980)

    Google Scholar 

  110. A. Niemitz, L. Reimer: Digital image processing of multiple detector signals in SEM. Ultramicroscopy 16, 161 (1985)

    Google Scholar 

  111. F. Yano, S. Nomura: Deconvolution of SEM images. Scanning 15, 19 (1993)

    Google Scholar 

  112. E.R. Weibel„ G.S. Kistler, W.F. Schobe: Practial stereological methods for morphometric cytology. J. Cell. Biol. 30 23 (1966)

    Google Scholar 

  113. H. Giger: Grundgleichungen der Stereologie. Metrika 16, 43 (1970) [6.113] E.E. Underwood: Quantitative Stereology ( Addison-Wesley, Reading, MA 1972 )

    Google Scholar 

  114. C.G. Amstutz, H. Giger: Stereological methods applied to mineralogy, petrology, mineral deposits and ceramics. J. Microsc. 95, 145 (1972)

    Google Scholar 

  115. E.R. Weibel: Stereological techniques for electron microscopic morphometry. In Principles and Techniques of Electron Microscopy, Vol. 3, ed. by M.A. Hayat ( Van Nostrand-Reinhold, New York 1973 ) p. 237

    Google Scholar 

  116. J. Lebiedzik, K.G. Burke, S. Troutman, G.G. Johnson, E.W. White: New methods for quantitative characterization of multiphase particulate materials including thickness measurement. SEM 1973 ( I rRI, Chicago 1973 ) p. 121

    Google Scholar 

  117. W.R. Stott, E.J. Chatfield: A precision SEM image analysis system with full-feature EDXA characterization. SEM 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 53

    Google Scholar 

  118. R.J. Lee, J.F. Kelly: Overview of SEM-based automated image analysis. SEM 1980/I ( SEM Inc., AMF O’Hare, IL 1980 ) p. 303

    Google Scholar 

  119. D.L. Johnson: Automated SEM characterization of particulate inclusions in biological tissues. SEM 1983/I1I ( SEM Inc., AMF O’Hare, IL 1983 ) p. 1211

    Google Scholar 

  120. ] T. Mattfeldt (Guest Editor): Journal of Microscopy 186, Pt.2, 91–209 (May 1997) (papers from the 9th Intl’ Congr. for Stereology)

    Google Scholar 

  121. A. Boyde: Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images. J. Microsc. 98, 452 (1973)

    Google Scholar 

  122. A. Boyde: Photogrammetry of stereopair SEM images using separate measurements from the two images. SEM 1974 ( ITTRO, Chicago 1974 ) p. 101

    Google Scholar 

  123. P.G.T. Howell: The derivation of working formulae for SEM photogrammetry. Scanning 1, 230 (1978)

    Google Scholar 

  124. G. Koenig, W. Nickel, J. Storl, D. Meyer, J. Stange: Digital stereophotogrammetry for processing SEM data. Scanning 9, 185 (1987)

    Google Scholar 

  125. J.T.L. Thong, B.C. Breton: A topographic measurement instrument based on the SEM. Rev. Sci. Instr. 63, 131 (1992)

    ADS  Google Scholar 

  126. A.R. Dinnis: After-lens deflection and its use. In Scanning Electron Microscopy: systems and applications ( IoP, London 1973 ) p. 76

    Google Scholar 

  127. A. Boyde: A stereo-plotting device for SEM micrographs; and a real time 3-D system for the SEM. SEM 1974 ( ITTRI, Chicago 1974 ) p. 93

    Google Scholar 

  128. E.J. Chatfield, J. More, V.H. Nielsen: Stereoscopic SEM at T.V. scanrates. SEM 1974 ( ITTRI, Chicago 1974 ) p. 117

    Google Scholar 

  129. J.B. Fawley: Design and performance of presently available TV rate stereo SEM systems. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Image Contrast and Signal Processing. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics