Skip to main content

Nonlinear Mechanisms for FWM

  • Chapter
Principles of Phase Conjugation

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 42))

  • 284 Accesses

Abstract

A great number of experiments on OPC-FWM have been conducted in recent years. The optical scheme was nearly the same in all of them. The first reference wave was transmitted through a medium and then reflected by a mirror, corner reflector or a triple prism to produce a second reference wave. The signal wave was obtained by branching off a certain amount of the laser beam energy. In some cases, either a phase or an amplitude mask placed in the signal path was used for a quantitative or qualitative determination of the OPC fraction. These experiments differed in the nonlinearity mechanisms used to obtain FWM. This chapter gives an account of the major optical non-linearity mechanisms used therein and reviews, in brief, experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bloom, G. E. Bjorklund: Conjugate wave-front generation and image reconstruction by four-wave mixing. Appl. Phys. Lett. 31, 592 (1977)

    Article  ADS  Google Scholar 

  2. S. M. Jensen, R. W. Hellwarth: Observation of the time-reversed replica of a monochromatic optical wave. Appl. Phys. Lett. 32, 166 (1978)

    Article  ADS  Google Scholar 

  3. D. M. Pepper, D. Fekete, A. Yariv: Observation of amplified phase conjugate reflection and optical parametric oscillation by four-wave mixing in a transparent medium. Appl. Phys. Lett. 33, 41 (1978)

    Article  ADS  Google Scholar 

  4. S. M. Jensen, R. W. Hellwarth: Generation of time-reversed waves by nonlinear refraction in a waveguide. Appl. Phys. Lett. 33, 404 (1978)

    Article  ADS  Google Scholar 

  5. V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov: Complete phase conjugation of depolarized radiation via degenerate four-photon interaction (theory and experiment). Kvantovaya Elektron. 7, 627 (1980) [English transl.: Sov. J. Quant. Electron. 10, 356 (1980)]

    ADS  Google Scholar 

  6. D. M. Bloom, P. F. Liao, N. P. Economou: Observation of amplified reflection by degenerate four-wave mixing in atomic sodium vapor. Opt. Lett. 2, 58 (1978)

    Article  ADS  Google Scholar 

  7. R. L. Abrams, R. C. Lind: Degenerate four-wave mixing in absorbing media. Opt. Lett. 2, 94 (1978);

    Article  ADS  Google Scholar 

  8. R. L. Abrams, R. C. Lind: Degenerate four-wave mixing in absorbing media. Opt. Lett. 3, 205 (1978)

    Article  ADS  Google Scholar 

  9. R. C. Lind, D. G. Steel, G. J. Dunning: Phase conjugation by resonantly enhanced degenerate four-wave mixing. Opt. Eng. 21, 190 (1982)

    Article  ADS  Google Scholar 

  10. S. Saikan, H. Waketa: Configuration dependence of optical filtering characteristics in backward nearly degenerate four-wave mixing. Opt. Lett. 6, 281 (1981)

    Article  ADS  Google Scholar 

  11. J. Nilsen, N. S. Gluck, A. Yariv: Narrow-band optical filter through phase conjugation by nondegenerate four-wave mixing in sodium vapor. Opt. Lett. 6, 380 (1981)

    Article  ADS  Google Scholar 

  12. J. F. Lam: Doppler-free laser spectroscopy via degenerate four-wave mixing. Opt. Eng. 21, 219 (1982)

    Article  Google Scholar 

  13. B. I. Stepanov, E. V. Ivakin, A. S. Rubanov: On recording plane and volume dynamic holograms in saturable absorbers. Dokl. Akad. Nauk SSSR 196, 567 (1971) [English transl.: Sov. Phys. — Dokl. 16, 46 (1971)]

    Google Scholar 

  14. V. N. Blaschuk, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, B. Ya. Zel’dovich: Wave-front reversal with angular tilting — theory and experiment for the four-wave mixing. Opt. Commun. 31, 383 (1979)

    Article  ADS  Google Scholar 

  15. R. A. Fisher, B. J. Feldman: On resonant phase-conjugate reflection and amplification at 10.6 μm in inverted CO2. Opt. Lett. 4, 140 (1979)

    Article  ADS  Google Scholar 

  16. A. Tomita: Phase conjugation using gain saturation of a Nd: YAG laser. Appl. Phys. Lett. 34, 463 (1979)

    Article  ADS  Google Scholar 

  17. F. V. Bunkin, V. V. Savransky, G. A. Shafeev: Resonant phase conjugation in an active medium with copper vapour. Kvantovaya Elektron. 8, 1346 (1981) [English transl.: Sov. J. Quant. Electron. 11, 810 (1981)]

    Google Scholar 

  18. Yu. F. Kir’yanov, G. G. Kochemasov, S. M. Martynova, V. D. Nikolaev: Four-wave mixing in resonantly amplifying media under inversion saturation. Kvantovaya Elektron. 8, 1734 (1981) [English transl.: Sov. J. Quant. Electron. 11, 1047 (1981)]

    ADS  Google Scholar 

  19. R. K. Jain: Degenerate four-wave mixing in semiconductors: application to phase conjugation and to picosecond-resolved studies of transient carrier dynamics. Opt. Eng. 21, 199 (1982)

    Article  ADS  Google Scholar 

  20. E. E. Bergmann, I. J. Bigio, B. J. Feldman, R. A. Fisher: High-efficiency pulsed 10.6 μm phase-conjugate reflection via degenerate 4-wave mixing. Opt. Lett. 3, 82 (1978)

    Article  ADS  Google Scholar 

  21. D. E. Watkins, C. R. Phipps Jr., S. J. Thomas: Observation of amplified reflection through degenerate four-wave mixing at CO2 laser wavelength in germanium. Opt. Lett. 6, 76 (1981)

    Article  ADS  Google Scholar 

  22. I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergmann: High-efficient phase conjugation in germanium and inverted CO2 (review). Kvantovaya Elektron. 6, 2318 (1979) [English transl.: Sov. J. Quant. Electron. 9, 1365 (1979)]

    ADS  Google Scholar 

  23. N. G. Basov, B. Ya. Zel’dovich, V. I. Kovalev, F. S. Faizullov, V. B. Fedorov: Reflection of a multifrequency signal in four-wave interaction in germanium at 10.6 μm. Kvantovaya Elektron. 8, 860 (1981) [English transl.: Sov. J. Quant. Electron. 11, 514 (1981)]

    Google Scholar 

  24. E. O. Kane: J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  25. M. A. Khan, P. W. Kruse, J. F. Ready: Optical phase conjugation in Hg1-xCdxTe. Opt. Lett. 5, 261 (1980)

    Article  ADS  Google Scholar 

  26. R. K. Jain, D. G. Steel: Degenerate four-wave mixing of 10.6 μm radiation in Hg1-xCdxTe. Appl. Phys. Lett. 37, 1 (1980)

    Article  ADS  Google Scholar 

  27. S. Y. Yuen: Four-wave mixing via optically generated free carriers in Hg1-xCdxTe. Appl. Phys. Lett. 41, 590 (1982)

    Article  ADS  Google Scholar 

  28. R. K. Jain, M. B. Klein: Degenerate four-wave mixing near the band gap of semiconductors. Appl. Phys. Lett. 35, 454 (1979)

    Article  ADS  Google Scholar 

  29. R. K. Jain, M. B. Klein, R. C. Lind: High-efficiency degenerate four-wave mixing of 1.06 μm radiation in silicon. Opt. Lett. 4, 328 (1979)

    Article  ADS  Google Scholar 

  30. A. Borshch, M. Brodin, V. Volkov, N. Kukhtarev: Phase conjugation by the degenerate six-photon mixing in semiconductors. Opt. Commun. 35, 287 (1980)

    Article  ADS  Google Scholar 

  31. M. A. Khan, R. L. Bennet, P. W. Kruse: Bandgap — resonant optical phase conjugation in n-type Hg1-xCdxTe at 10.6 μm. Opt. Lett. 6, 560 (1981)

    Article  ADS  Google Scholar 

  32. V. L. Vinetsky, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin: Dynamic self-diffraction of coherent light beams. Usp. Fiz. Nauk 129, 113 (1979)

    Article  ADS  Google Scholar 

  33. N. V. Kukhtarev, S. G. Odulov: Optical phase conjugation via four-wave interaction in media with nonlocal nonlinearity. Pis’ma Zh. Eksp. Teor. Fiz. 30, 6 (1979) [English transl.: JETP Lett. 30, 4 (1979)]

    Google Scholar 

  34. V. L. Vinetsky, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin: Amplification of coherent beams by dynamic holograms in ferroelectric crystals. Izv. Akad. Nauk SSSR 41, 811 (1977)

    Google Scholar 

  35. V. P. Kondilenko, S. G. Odulov, M. S. Soskin: Amplified reflection of phase-conjugate waves in crystals with the linear electrooptical effect in an external electrical field. Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 958 (1981)

    Google Scholar 

  36. D. S. Hamilton, D. Heiman, J. Feinberg, R. W. Hellwarth: Spatial-diffusion measurements in impurity-doped solids by degenerate four-wave mixing. Opt. Lett. 4, 124 (1979)

    Article  ADS  Google Scholar 

  37. J. Feinberg: Self-pumped, continuous-wave phase conjugator using internal reflection. Opt. Lett. 7, 486 (1982)

    Article  ADS  Google Scholar 

  38. J. Feinberg, R. W. Hellwarth: Phase conjugating mirror with continuous-wave gain. Opt. Lett. 5, 519 (1980);

    Article  ADS  Google Scholar 

  39. J. Feinberg, R. W. Hellwarth: Phase conjugating mirror with continuous-wave gain. Opt. Lett. 6, 257 (1981)

    Article  ADS  Google Scholar 

  40. B. Fischer, M. Cronin-Colomb, J. O. White, A. Yariv: Amplified reflection, transmission and self-oscillation in real-time holography. Opt. Lett. 6, 519 (1981)

    Article  ADS  Google Scholar 

  41. V. I. Bespalov, A. A. Betin, G. A. Pasmanik, A. A. Shilov: Optical phase conjugation by Raman transformation of Stokes wave in the field of counterpropagating pump beams. Pis’ma Zh. Tekhn. Fiz. 5, 242 (1979) [English transl.: Sov. Phys. — Tech. Phys. Lett. 5, 97 (1979)]

    ADS  Google Scholar 

  42. N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, A. A. Shilov: Phase conjugation of weak optical signals with à large reflection coefficient. Pis’ma Zh. Eksp. Teor. Fiz. 32, 639 (1980) [English transl.: JETP Lett. 32, 625 (1980)]

    Google Scholar 

  43. B. Ya. Zel’dovich, V. V. Shkunov: Specific features of stimulated scattering in counter-propagating pump beams. Kvantovaya Elektron. 9, 393 (1982) [English transl.: Sov. J. Quant. Electron. 12, 223 (1982)]

    Google Scholar 

  44. N. F. Andreev, V. I. Bespalov, A. M. Kiselev, G. A. Pasmanik, A. A. Shilov: Raman interaction in the field of counterpropagating optical waves. Zh. Eksp. Teor. Fiz. 82, 1047 (1982) [English transl.: Sov. Phys. — JETP 55, 537 (1982)]

    ADS  Google Scholar 

  45. S. N. Vlasov, V. I. Talanov: “On some features of signal wave scattering by counterpropagating pump beams in degenerate four-photon interaction”, in Optical Phase Conjugation in Nonlinear Media, ed. by V. I. Bespalov (IPF AN SSSR, Gorky, USSR 1979) p. 85

    Google Scholar 

  46. J. P. Huignard, J. P. Herrian, P. Auborg, E. Spitz: Phase-conjugate wavefront generation via real-time holography in Bi12SiO20 crystals. Opt. Lett. 4, 21 (1979)

    Article  ADS  Google Scholar 

  47. J. O. Tocho, W. Sibbett, D. J. Bradley: Thermal effects in phase conjugation in saturable absorbers with picosecond pulses. Opt. Commun. 37, 67 (1981)

    Article  ADS  Google Scholar 

  48. R. G. Caro, M. C. Gower: Phase conjugation of KrF laser radiation. Opt. Lett. 6, 557 (1981)

    Article  ADS  Google Scholar 

  49. Yu. I. Kucherov, S. A. Lesnik, M. S. Soskin, A. I. Khizhnyak: “Copropagating four-beam interaction in slowly-responding media”, in Phase Conjugation in Nonlinear Media, ed. by V. I. Bespalov (IPF AN SSSR, Gorky, USSR 1982) p. 111

    Google Scholar 

  50. Materials of the 1st Soviet-Japanese Symposium on Ferroelectricity. Izv. AN SSSR, Ser. Fiz., 3 and 4, 1977

    Google Scholar 

  51. J. J. Amodei: RCA Rev. 32, 185 (1971)

    Google Scholar 

  52. V. I. Bespalov, A. A. Betin, S. N. Kulagina, G. A. Pasmanik, A. A. Shilov: Phase conjugation of radiation with a spatially inhomogeneous polarization state in four-wave Raman interaction. Pis’ma Zh. Tekhn. Fiz. 6, 1288 (1980)

    Google Scholar 

  53. V. I. Bespalov, A. A. Betin, A. I. Dyatlov, S. N. Kulagina, V. G. Manishin, G. A. Pasmanik, A. A. Shilov: Optical phase conjugation by four-photon processes at two-quantum resonance. Zh. Eksp. Teor. Fiz. 79, 378 (1980) [English transl.: Sov. Phys. — JETP 52, 190 (1980)]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zel’dovich, B.Y., Pilipetsky, N.F., Shkunov, V.V. (1985). Nonlinear Mechanisms for FWM. In: Principles of Phase Conjugation. Springer Series in Optical Sciences, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38959-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38959-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13573-0

  • Online ISBN: 978-3-540-38959-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics