Abstract
In the first section it is shown how to introduce on an abstract category operations of tensor products and duals having properties similar to the familiar operations on the category Vec k of finite-dimensional vector spaces over a field k. What complicates this is the necessity of including enough constraints so that, whenever an obvious isomorphism (e.g., exists in Vec k, a unique isomorphism is constrained to exist also in the abstract setting.
An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-540-38955-2_13
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abhyankar, S. Resolution of Singularities of Embedded Algebraic Surfaces, Academic Press, 1966.
Bourbaki, N. Algèbre; Modules et Anneaux Semi-Simples. Hermann, Paris (1958).
Bourbaki, N. Algèbre Commutative; Modules Plats, Localisation. Hermann, Paris (1961).
Deligne, P. La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972) 206–222.
Deligne, P. Valeurs de fonctions L et périodes d’integrales. Proc. Symp. Pure Math., A.M.S., 33 (1979) part 2, 313–346.
Giraud, J. Cohomologie Non Abélienne, Springer, Heidelberg, 1971.
Hochschild, G. The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
Humphries, J. Introduction to Lie Algebras and Representation Theory, Springer, Heidelberg, 1972.
Kuga, M. and Satake, I. Abelian varieties attached to polarized K3-surfaces, Math. Ann. 169 (1967) 239–242.
MacLane, S. Natural associativity and commutativity. Rice University Studies 69 (1963) 28–46.
MacLane, S. Categories for the Working Mathematician. Springer, Heidelberg, 1972.
Mumford, D. Abelian Varieties, Oxford U.P., Oxford, 1970.
Nori, M. On the representations of the fundamental group. Compositio Math. 33 (1976) 29–41.
Saavedra Rivano, N. Catégories Tannakiennes, Lecture Notes in Math 265, Springer, Heidelberg, 1972.
Serre, J.-P. Cohomologie Galoisienne, Lecture Notes in Math 5, Springer, Heidelberg, 1964.
Serre, J.-P. Groupes algébriques associés aux modules de Hodge-Tate, (Journées de Géométrie Algébrique de Rennes), Astérisque 65 (1979) 155–187.
Springer, T. Reductive groups, Proc. Symp. Pure Math., A.M.S., 33 (1979) part 1, 3–27.
Waterhouse, W. Introduction to Affine Group Schemes, Springer, Heidelberg, 1979.
Wells, R. Differential Analysis on Complex Manifolds. Prentice-Hall, Englewood Cliffs, 1973.
Rights and permissions
Copyright information
© 1982 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Deligne, P., Milne, J.S. (1982). Tannakian Categories. In: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol 900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38955-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-38955-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-11174-0
Online ISBN: 978-3-540-38955-2
eBook Packages: Springer Book Archive