Skip to main content

Elektrophysikalische Maßnahmen

  • Chapter
  • 2559 Accesses

Zusammenfassung

Elektrophysikalische Maßnahmen (im englischen Sprachgebrauch »electrophysical agents«, kurz EPAs) stellen in der Handtherapie einen wichtigen Teil der Behandlung dar. Physio- und Ergotherapeutinnen wenden thermische, elektrische, mechanische und zum Teil auch chemische Modalitäten an. Elektrophysikalische Maßnahmen sind eine gezielt eingesetzte Ergänzung zu weiteren therapeutischen Maßnahmen. Sie werden auch »passive« Maßnahmen genannt. Seit den Anfängen der Physiotherapie sind diese Anwendungen ein fester Bestandteil des Berufstandes (Watson 2016). Elektrophysikalische Maßnahmen sind weltweit ein Thema: 2009 wurde die International Society for Electrophysical Agents in Physiotherapy3, eine Untergruppe der World Confederation for Physical Therapy (WCPT) gegründet. Elektrophysikalische Modalitäten wirken primär auf der Ebene der Köperfunktionen, um in der Folge dem Patienten eine verbesserte Aktivität zu ermöglichen und seine Partizipation, seine Rollenerfüllung zu stärken. Zu den Körperfunktionen gehören u. a. Schmerzen, Gelenksbeweglichkeit, die Funktionen der Haut (Vernarbung), Muskelaktivität oder die Durchblutung. Jede Therapeutin wendet physikalische Mittel an und hat damit mehr oder weniger positive Erfahrungen sammeln können. Auch die Anwendung von elektrophysikalischen Maßnahmen sollte auf den Prinzipen der evidenzbasierten Medizin gründen: Es handelt sich um die Integration von Evidenz aus der Literatur, den Erfahrungen der Therapeutin und den Werten und Erwartungen des Patienten (Sackett 2000).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-38926-2_25
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38926-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Abb. 25.1
Abb. 25.2
Abb. 25.3a–c
Abb. 25.4
Abb. 25.5
Abb. 25.6
Abb. 25.7
Abb. 25.8
Abb. 25.9
Abb. 25.10
Abb. 25.11
Abb. 25.12
Abb. 25.13
Abb. 25.14
Abb. 25.15a–d
Abb. 25.16
Abb. 25.17a,b
Abb. 25.18
Abb. 25.19
Abb. 25.20
Abb. 25.21
Abb. 25.22a–c
Abb. 25.23
Abb. 25.24
Abb. 25.25
Abb. 25.26
Abb. 25.27
Abb. 25.28
Abb. 25.29
Abb. 25.30

Notes

  1. 1.

    3http://www.wcpt.org/iseapt (Zugriff 15.11.2017)

  2. 2.

    Angaben zur den Webseiten finden sich im Abschn. »Literatur«.

  3. 3.

    Chromophor: Ein Molekül, welches als natürlich vorkommendes Pigment agiert und einem Objekt durch selektive Lichtabsorption bei einer bestimmten Wellenlänge die Farbe gibt.

Literatur

Zitierte Literatur

  • Abramson D, Mitchell R, Tuck S et al (1961) Changes in blood flow, oxygen uptake and tissue temperatures produced by the topical application or wet heat. Arch Phys Med Rehabil 42:305–318

    Google Scholar 

  • Airaksinen OV, Kyrklund N, Latvala K et al (2003) Efficacy of cold gel for soft tissue injuries. Am J Sports Med 31(5):680–684

    Google Scholar 

  • Allgemeine Unfallversicherungsanstalt (AUVA). Grundlagen der Lasersicherheit. 23.10.2014. http://www.auva.at/portal27/portal/auvaportal/content/contentWindow?contentid=10008.544574&action=b&cacheability=PAGE&version=1414485625 (18. 11. 2017)

  • Anand P (2003) Capsaicin and menthol in the treatment of itch and pain: recently cloned receptors provide the key. Gut 52(9):1233–5

    Google Scholar 

  • Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19

    Google Scholar 

  • Arakawa T, Shigyo H, Kishibe K et al (2010) Electrical stimulation prevents apoptosis in denervated skeletal muscle. NeuroRehabilitation 27:147–154

    Google Scholar 

  • Baker KJ, Robertson VJ, Duck FA (2001) A review of therapeutic ultrasound: biophysical effects. Phys Ther 81(7):1351–1358

    Google Scholar 

  • Baltzer AWA, Ostapczuk MS, Stosch D (2016) Positive effects of low level laser therapy (LLLT) on Bouchard’s and Heberden’s osteoarthritis. Lasers Surg Med 48:498–504

    Google Scholar 

  • Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16(4):331–42 Review

    Google Scholar 

  • Bashardoust Tajali S, Houghton P, MacDermid JC et al (2012) Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil 91(4):349–367

    Google Scholar 

  • Batavia M (2004) Contraindications for superficial heat and therapeutic ultrasound: do sources agree? Arch Phys Med Rehabil 85:1006–1012

    Google Scholar 

  • Bélanger AY (2003) Evidence-based guide to therapeutic physical agents. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Bélanger AY (2010) Therapeutic electrophysical agents. Evidence behind practice, 2. Aufl. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Bélanger AY (2015) Therapeutic electrophysical agents. Evidence behind practice, 3. Aufl. Wolters Kluwer, Lippincott Williams & Wilkins. Philadelphia

    Google Scholar 

  • Bissell JH (1999) Therapeutic modalities in hand surgery. J Hand Surg 24A(3):435–448

    Google Scholar 

  • Bjordal JM, Couppé Ch, Chow RT et al (2003) A systematic review of low level laser therapy with location specific doses for pain from chronic joint disorders. Aust J Physiother 49(2):107–116

    Google Scholar 

  • Bjordal JM, Johnson MI, Iversen V et al (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanism of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24(2):158–168

    Google Scholar 

  • Borrell R, Parker R, Henley E et al (1980) Comparison of in vivo temperatures produced by hydrotherapy, paraffin wax treatment and fluidotherapy. Phys Ther 60(10):1253–1256

    Google Scholar 

  • Bossert FP, Jenrich W, Vogedes K (2006) Leitfaden Elektrotherapie. Urban & Fischer, München

    Google Scholar 

  • Bracciano AG (2000) Physical agent modalities. SLACK, Thorofare NJ

    Google Scholar 

  • Bracciano AG (2008) Physical agent modalities. Theory and application for the occupational therapist, 2. Aufl. SLACK, Thorofare NJ

    Google Scholar 

  • Breger Stanton DE, Lazaro R, MacDermid JC (2009) A systematic review of the effectiveness of contrast baths. J Hand Ther 21(1):57–70

    Google Scholar 

  • Bringmann W (2008) Low level laser therapy, Licht kann heilen, 4. Aufl. Eigenverlag

    Google Scholar 

  • Brosseau L, Welch V, Wells G et al (2000) Low level laser therapy for osteoarthritis and rheumatoid arthritis: a metaanalysis. J Rheumatol 25(8):1961–1969

    Google Scholar 

  • Burnham RS, McKinley RS, Vincent DD (2006) Three Types of Skin-Surface Thermometers. Am J Phys Med Rehabil 85(7):553–558

    Google Scholar 

  • Cagnie B, Vinck E, Rimbaut S et al (2003) Phonophoresis versus topical application of ketoprofen: comparison between tissue and plasma levels. Phys Ther 83:701–712

    Google Scholar 

  • Campbell JM (2002) Muscle weakness or paralysis with compromise of peripheral nerve. IFESS http://ifess.org/sites/default/files/Muscle_Weakness.pdf (18. 11. 2017)

  • Challiol MM, Laquierriere A (1922–1923) Action of the constant galvanic current on tissues in health and disease. Arch Radiol Electrother 25:135–139

    Google Scholar 

  • Chesterton LS, Foster NE, Ross L (2002) Skin temperature response to cryotherapy. Arch Phys Med Rehabil 83(4):543–549

    Google Scholar 

  • Ciccone CD (1995) Iontophoresis. In: Robinson AJ, Snyder-Mackler L (Hrsg) Clinical electrotherapy, 2. Aufl. Williams & Wilkins, Baltimore

    Google Scholar 

  • Costello TC, Jeske AH (1995) Iontophoresis: applications in transdermal medication delivery. Pharmacology Series. Phys Ther 75 (6):554–563

    Google Scholar 

  • Cramp M, Scott O (2008) Neuromuscular electrical stimulation: nerve-muscle interaction. In: Watson T (Hrsg). Electrotherapy, evidence-based practice, 12. Aufl. Churchill Livingstone, Elsevier Edinburgh

    Google Scholar 

  • Daanen HAM (1997) Central and peripheral control of finger blood flow in the cold. Thesis. Free University, Amsterdam, The Netherlands

    Google Scholar 

  • Dalecki D (2004) Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6:229–248

    Google Scholar 

  • Dardas A, Bae GH, Yule A et al (2014) Acetic acid iontophoresis for recalcitrant scarring in post-operative hand patients. J Hand Ther 25(1):44–48

    Google Scholar 

  • Dellhag B, Wollersjö I, Bjelle A (1992) Effect of active hand exercise and wax bath treatment in rheumatoid arthritis patients. Arthritis Care Res 5(2):87–92

    Google Scholar 

  • Derry S, Lloyd R, Moore RA et al (2009) Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database Syst Rev 7(4):CD007393

    Google Scholar 

  • Diemer F, Sutor V (2007) Mit dem Thermometer die Heilung beurteilen. Physiopraxis 7–8

    Google Scholar 

  • Dilek B, Gözüm M, Şahin E et al (2013) Efficacy of paraffin bath therapy in hand osteoarthritis: a single-blinded randomized controlled trial. Arch Phys Med Rehabil 94(4):642–649

    Google Scholar 

  • Draper DO, Prentice WE (2005) Therapeutic ultrasound. In: Prentice WE (Hrsg) Therapeutic modalities in rehabilitation, 3. Aufl. McGraw-Hill, New York

    Google Scholar 

  • Ebenbichler GR, Erdogmus CB, Resch KL et al (1999) Ultrasound therapy for calcific tendonitis of the shoulder, N Engl J Med 340(20):1533–1538

    Google Scholar 

  • Ebenbichler GR, Resch KL, Nicolakis P et al (1998) Ultrasound treatment for treating the carpal tunnel syndrome: randomised »sham« controlled trial. BMJ 316:731–735

    Google Scholar 

  • Ebenbichler GR (2005) Ultraschalltherapie. In: Fialka-Moser V (ed) Elektrotherapie. Richard Pflaum Verlag, München

    Google Scholar 

  • Eberstein A, Eberstein S (1996) Electrical stimulation of denervated muscle: is it worthwhile? Med Sci Sports Exerc 28(12): 1463–1469

    Google Scholar 

  • Fojuth F (2011) Zur Morphologie der peripheren Nervenregeneration und zur Beeinflussung des axonalen Regenerationsverhaltens durch elektrische Nervenstimulation. Dissertation, 1–111. Medizinische Fakultät Charité, Universitätsmedizin Berlin. https://d-nb.info/1029845654/34 (30. 03. 2018).

  • Franke TP, Koes BW, Geelen SJ et al (2017) Do patients with carpal tunnel syndrome benefit from low-level laser therapy? A systematic review of randomized controlled trials. Arch Phys Med Rehabil. doi: 10.1016/j.apmr.2017.06.002

  • Geetha K, Hariharan NC, Mohan J (2014) Early ultrasound therapy for rehabilitation after zone II flexor tendon repair. Indian J Plast Surg 47(1):85–91

    Google Scholar 

  • Glaesener JJ (2007) Hydrotherapie. In: Gutenbrunner Chr, Glaesener JJ (Hrsg) Rehabilitation, Physikalische Medizin und Naturheilverfahren. Springer Medizin, Heidelberg

    Google Scholar 

  • Green BG (2005) Lingual heat and cold sensitivity following exposure to capsaicin or menthol. Chem Senses 30 Suppl 1:i201–202

    Google Scholar 

  • Gutenbrunner Chr (2007) Wärme- und Kälteträgertherapie. In: Gutenbrunner Chr, Glaesener JJ (Hrsg) Rehabilitation, Physikalische Medizin und Naturheilverfahren. Springer Medizin, Heidelberg

    Google Scholar 

  • Hardy M, Woodall W (1998) Therapeutic effects of heat, cold, and stretch on connective tissue. J Hand Ther 11(2):148–156

    Google Scholar 

  • Harrison A, Lin S, Pounder N et al (2016) Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 70:45–52

    Google Scholar 

  • Haslerud S, Magnussen LH, Joensen J et al (2015) The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int 20(2):108–125

    Google Scholar 

  • Hode L (2002) Laser – der heilt. [On-line] http://www.laser.nu/slms/tysk.htm (30. 03. 2018)

  • Hopkins JT, McLoda TA, Seegmiller JG et al (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39(3): 223–229

    Google Scholar 

  • Jenrich W (2000) Grundlagen der Elektrotherapie. Urban & Fischer, München

    Google Scholar 

  • Johns LD (2002) Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train 37(3):293–299

    Google Scholar 

  • Kaada B, Eielson O (1983) In search of mediators of skin vasodilation induced by transcutaneous nerve stimulation, serotonin implicated. Gen Pharm 14:635–641

    Google Scholar 

  • Kahn J (1977) Acetic acid iontophoresis for calcium deposits. Phys Ther 57:658–660

    Google Scholar 

  • Karagülle O, Candir F, Kalinin J (2004) Akutwirkungen kalter CO2-Teilbäder auf Mikrozirkulation und Schmerzempfindlichkeit. Phys Med Rehab Kuror 14:13–17

    Google Scholar 

  • Karu T (1987) Photobiological fundamentals of low-power laser therapy. IEEE Journal of Quantum Electronics. QE-23(10): 1703–1717

    Google Scholar 

  • Karu T (1989) Photobiology of low-power laser effects. Health Physics 56(5):691–704

    Google Scholar 

  • Kerschan-Schindl K, Schuhfried O (2005) Lasertherapie. In: Fialka- Moser V (Hrsg) Elektrotherapie. Richard Pflaum, München

    Google Scholar 

  • Knight KL, Draper DO (2008) Therapeutic modalities, the art and science. Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kolarova H, Ditrichova D, Wagner J (1999) Penetration of the laser light into the skin in vitro. Lasers Surg Med 24(3):231–235

    Google Scholar 

  • Laakso EL, Robertson VJ, Chipchase LS (2002) The place of electrophysical agents in Australian and New Zealand entry-level curricula: Is there evidence for their inclusion? Aust J Physiother 48(4):251–254

    Google Scholar 

  • Leandri M, Brunetti O, Parodi CI (1986) Telethermographic findings after transcutaneous electrical nerve stimulation. Phys Ther 66(2):210–213

    Google Scholar 

  • Lee SK, Wolfe, SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8(4):243–252

    Google Scholar 

  • Lewis T (1930) Observations upon the reactions of the vessels of the human skin to cold. Heart 15:177–208

    Google Scholar 

  • Mancuso T, Poole JL (2009) The effect of paraffin and exercise on hand function in persons with scleroderma: a series of single case studies. J Hand Ther 22:71–78

    Google Scholar 

  • Mason L, Moore RA, Derry S et al (2004) Systematic review of topical capsaicin for the treatment of chronic pain. BMJ 24:328(7446):991. Epub 2004 Mar 19

    Google Scholar 

  • Mayr E, Frankel V, Rüter A (2000) Ultrasound – an alternative healing method for nonunions? Arch Orthop Trauma Surg 120(1–2):1–8

    Google Scholar 

  • Michlovitz S, Hun L, Erasala GN et al (2004) Continuous low-level heat wrap therapy is effective for treating wrist pain. Arch Phys Med Rehabil 85:1409–1416

    Google Scholar 

  • Michlovitz S (2002) Ultrasound and selected physical agent modalities in upper extremity rehabilitation. In: Mackin EJ, Callahan AD, Skriven TM, Schneider LH, Osterman AL (Hrsg) Rehabilitation of the hand and upper extremity, 5. Aufl. Mosby, St. Louis

    Google Scholar 

  • Mokrusch T (1996) Langzeiterfahrung mit der Elektrotherapie peripherer Nervenläsionen. Krankengymnastik 48:996–1004

    Google Scholar 

  • Mucha C (1992) Einfluss von CO2-Bädern im frühfunktionellen Therapiekonzept der Algodystrophie. Phys Med Rehab Kuror 2:173–178

    Google Scholar 

  • Myrer JW, Johnson AW, Mitchell UH et al (2011) Topical analgesic added to paraffin enhances paraffin bath treatment of individuals with hand osteoarthritis. Disabil Rehabil 33(6):467–474

    Google Scholar 

  • Navratil L, Kymplova J (2002) Contraindications in noninvasive laser therapy: truth and fiction. J Clin Laser Med Surg 20(6):341–343

    Google Scholar 

  • Nirschl RP, Rodin DM, Ochiaia DH et al (2003) Iontophoretic administration of dexamethasone sodium phosphate for acute epicondylitis. Am J Sports Med 31(2):189–195

    Google Scholar 

  • Novak CB, von der Heyde RL (2013) Evidence and techniques in rehabilitation following nerve injuries. Hand Clin 29(3):383–392

    Google Scholar 

  • Oerlemans HM, Graff MJL, Dijkstra-Hekkink JBG et al (1999) Reliability and normal values for measuring the skin temperature of the hand with an infrared tympanic thermometer. A pilot study. J Hand Ther 12:284–290

    Google Scholar 

  • Ottawa Panel (2004) Ottawa panel evidence-based clinical practice guidelines for electrotherapy and thermotherapy. Interventions in the management of rheumatoid arthritis in adults. Phys Ther 84(11):1016–1043

    Google Scholar 

  • Pieber K, Herceg M, Paternostro-Sluga T et al (2015) Optimizing stimulation parameters in functional electrical stimulation of denervated muscles: a cross-sectional study. J Neuroeng Rehabil 12:51

    Google Scholar 

  • Polat BE, Hart D, Langer R et al (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    Google Scholar 

  • Posten W, Wrone DA, Dover JS et al (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 31(3):334–340 Review

    Google Scholar 

  • Prosser R, Conolly WB (2003) Rehabilitation of the Hand & Upper Limb. Butterworth Heinemann, Edinburgh

    Google Scholar 

  • Reidenbach HD, Dollinger K, Hofmann, J (2003) Überprüfung der Laserklassifizierung unter Berücksichtigung des Lidschlussreflexes; Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Fb 985, Wirtschaftsverlag NW, Bremerhaven

    Google Scholar 

  • Robertson V, Ward A, Low J et al (2006) Electrotherapy explained, principles and practice, 4. Aufl. Butterworth Heinemann Elsevier, Edinburgh

    Google Scholar 

  • Robertson VJ, Baker KG (2001) A review of therapeutic ultrasound: effectiveness studies. Phys Ther 81(7):1339–1350

    Google Scholar 

  • Robinson VA, Brosseau L, Casimoro L et al (2002) Thermotherapy for treating rheumatoid arthritis. Cochrane Database Syst Rev (2):CD002826

    Google Scholar 

  • Rostalski W, Hemrich N (2007) Elektrotherapie. In: Hüter-Becker A, Dölken M (Hrsg) Physikalische Therapie, Massage, Elektrotherapie und Lymphdrainage. Thieme, Stuttgart

    Google Scholar 

  • Sackett DL, Straus SE, Richardson WS et al (2000) Evidence-based medicine: how to practice and teach EBM, 2. Aufl. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Saliba E, Foreman-Saliba S (2005) Low-level laser therapy. In: Prentice WE (Hrsg) Therapeutic modalities in rehabilitation, 3. Aufl. McGraw-Hill, New York

    Google Scholar 

  • Sandqvist G, Akesson A, Eklund M (2004) Evaluation of paraffin bath treatment in patients with systemic sclerosis. Disabil Rehabil 26(16):981–987

    Google Scholar 

  • Schuhfried O (2005) Iontophorese. In: Fialka-Moser V (Hrsg) Elektrotherapie. Richard Pflaum, München

    Google Scholar 

  • Schweizer Bundesamt für Gesundheit (BAG). Publikation: Achtung, Laserstrahl! August 2016. http://www.schallundlaser.ch/pdf/suva_achtung_laserstrahl.pdf (30. 03. 2018)

  • Smidt N, Assendelft JJ, Arola H et al (2003) Effectiveness of physiotherapy for lateral epicondylitis: a systematic review. Ann Med. 35(1):51–62

    Google Scholar 

  • Strahlenschutzkommission – Ein Beratungsgremium des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Publikation: Gefahren bei Laseranwendung an der menschlichen Haut, 31. Oktober 2000. http://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2000/Gefahren_bei_Laseranwendungen.pdf?__blob=publicationFile (30.03.18)

  • Teloo E (2007) Wärmetherapie. In: Hüter-Becker A, Dölken (Hrsg) Physikalische Therapie, Massage, Elektrotherapie und Lymphdrainage. Thieme, Stuttgart

    Google Scholar 

  • Thorsteinsson G, Stonnington H, Stillwell GK et al (1978) The placebo effect of transcutaneous electrical stimulation. Pain 5(1):31–41

    Google Scholar 

  • Uhlemann Ch, Wollina U (2003) Wirkungsphysiologische Aspekte des therapeutischen Ultraschalls in der Wundbehandlung. Phlebologie 4:81–86 http://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiwp-PMiuzOAhUDtBQKHUtqBiYQFggjMAA&url=http%3A%2F%2Ftpg.schattauer.de%2Fde%2Finhalt%2Farchiv%2Fissue%2Fspecial%2Fmanuscript%2F983%2Fdownload.html&usg= AFQjCNEQw2YX-ub0yHxsqT9KTr2EHML9Zw (30. 03. 2018)

  • Vacariu G (2005) Elektrotherapie in der Schmerzbehandlung. In: Fialka-Moser V (Hrsg) Elektrotherapie. Richard Pflaum, München

    Google Scholar 

  • Verhagen AP, Bierma-Zeinstra SM, Cardoso JR et al (2003) Balneotherapy for rheumatoid arthritis. Cochrane Database Syst Rev (4):CD000518. Review. Update in: Cochrane Database Syst Rev. 2015 Apr 11(4)

    Google Scholar 

  • Wall PD (1994) The Placebo and the placebo response. In: Wall PD, Mellzack R (Hrsg) Textbook of pain, 3. Aufl. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Walsh DM (1997) TENS, clinical applications and related theory. Churchill Livingstone, New York

    Google Scholar 

  • WALT. World Association for LASER Therapy (2010) Dosage recommendations. https://waltza.co.za/wp-content/uploads/2012/08/Dose_table_904nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf (18. 11. 2017)

  • Ward RS, Hayes-Lundy C, Reddy R et al (1994) Evaluation of topical therapeutic ultrasound to improve response to physical therapy and lessen scar contracture after burn injury. J Burn Care Rehabil 15:74–79

    Google Scholar 

  • Warden SJ, Fuchs RK, Kessler CK et al (2006) Ultrasound produced by a conventional therapeutic ultrasound unit accelerates fracture repair. Phys Ther 86(8):1118–1125

    Google Scholar 

  • Watson T (2015) Ultrasound treatment dose calculations. http://www.electrotherapy.org/assets/Downloads/US%20dose%20chart%202015.pdf (30. 03. 2018)

  • Watson T (2016) Elektrotherapie. In: van den Berg F (Hrsg) Physiotherapie für alle Körpersysteme: Evidenzbasierte Tests und Therapie. Thieme, Stuttgart

    Google Scholar 

  • Wenk W (2004) Elektrotherapie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wenk W (2011) Elektrotherapie, 2. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Williams R (1987) Production and transmission of ultrasound. Physiotherapy 73:113–116

    Google Scholar 

  • Ying Z, Lin T, Yan S (2012) Low-intensity pulsed ultrasound therapy: a potential strategy to stimulate tendon-bone junction healing. Journal of Zhejiang University Science B 13(12): 955–963

    Google Scholar 

  • Bedienungsanleitung Gynma Uniphy. Bedienungsanleitung Laser von Combi 500-Gerät. 2001, Version 1.1

    Google Scholar 

Weiterführende Literatur

  • Ainsworth R, Dziedzic K, Hiller L et al (2007) A prospective double blind placebo-controlled randomized trial of ultrasound in the physiotherapy treatment of shoulder pain. Rheumatology 46:815–820

    Google Scholar 

  • Ammer K (2003) Konservative, nicht medikamentöse Therapie bei Rheumatoidarthritis. Phys Med Rehab Kuror 13(1):13–20

    Google Scholar 

  • Anderson CR, Morris RL, Boeh SD et al (2003) Effects of iontophoresis current magnitude and duration on dexamethasone deposition and localized drug retention. Phys Ther 83(2): 161–170

    Google Scholar 

  • Bakhtiary AH, Rashidy-Pour A (2004) Ultrasound and laser therapy in the treatment of carpal tunnel syndrome. Aust J Physiother 50(3):147–151

    Google Scholar 

  • Barrie Smith N (2007) Perspectives on transdermal ultrasound mediated drug delivery. Int J Nanomedicine 2(4):585–594

    Google Scholar 

  • Baskurt F, Özcan A, Algun C (2003) Comparison of effects of phonophoresis and iontophoresis of naproxen in treatment of lateral epicondylitis. Clin Rehabil 17(1):96–100

    Google Scholar 

  • Beckerman H, de Bie RA, Bouter LM et al (1992) The efficacy of laser therapy for musculoskeletal and skin disorders: a critical-based meta-analysis of randomized clinical trials. Phys Ther 72(7):483–491

    Google Scholar 

  • Bjordal JM, Couppe C, Ljunggren AE (2001) Low level laser therapy for tendinopathy. Evidence of a dose-response pattern. Phys Ther Rev 6(2):91–99

    Google Scholar 

  • Bjordal JM, Bogen B, Lopes-Martins RA et al (2005) Can cochrane reviews in controversial areas be biased? A sensitivity analysis based on the protocol of a systematic cochrane review on low-level laser therapy in osteoarthritis. Photomed Laser Surg 23(5):453–458

    Google Scholar 

  • Bleakley C, McDonough S, MacAuley D (2004) The use of ice in the treatment of acute soft-tissue injury. Am J Sports Med 32(1):251–261

    Google Scholar 

  • Brosseau L, Yonge KA, Robinson V et al (2007) Transcutaneous electrical nerve stimulation (TENS) for the treatment of rheumatoid arthritis in the hand (Review). Cochrance Database Syst Rev

    Google Scholar 

  • Brosseau L, Welch V, Wells G et al (2004) Low level laser therapy (classes I, II and III) for treating osteoarthritis. Cochrane Database Syst Rev (3) Update in: Cochrane Database Syst Rev. 2007;(1)

    Google Scholar 

  • Busse JW, Bhandari M, Kulkarni AV et al (2002) The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis. CMAJ 166(4):437–441

    Google Scholar 

  • Carlson EJ, Save AV, Slade JF 3rd et al (2015) Low-intensity pulsed ultrasound treatment for scaphoid fracture nonunions in adolescents. J Wrist Surg 4(2):115–120

    Google Scholar 

  • Casimiro L, Brosseau L, Robinson V et al (2002) Therapeutic ultrasound for the treatment of rheumatoid arthritis. The Cochrane Database Syst Rev. (3):CD003787

    Google Scholar 

  • Chan AK, Myrer JW, Measom GJ et al (1998) Temperature changes in human patellar tendon in response to therapeutic ultrasound. J Athl Train 33(2):130–135

    Google Scholar 

  • Cheing GL, Wan JW, Kai Lo S (2005) Ice and pulsed electromagnetic field to reduce pain and swelling after distal radius fractures. J Rehabil Med 37(6):372–377

    Google Scholar 

  • Cheing GL, Luk ML (2005) Transcutaneous electrical nerve stimulation for neuropathic pain. J Hand Surg Br 30(1):50–55

    Google Scholar 

  • Chien YW, Banga AK (1989) Iontophoretic (transdermal) delivery of drugs: overview of historical development. J Pharm Sci 78(5):353–354

    Google Scholar 

  • Chipchase L (2012) Is there a future for electrophysical agents in musculoskeletal physiotherapy? Man Ther 17(4):265–266

    Google Scholar 

  • Clijsen R, Brunner A, Barbero M et al (2017) Effects of low-level laser therapy on pain in patients with musculoskeletal disorders: a systematic review and meta-analysis. Eur J Phys Rehabil Med 53(4):603–610

    Google Scholar 

  • Cohen ML (1977) Measurement of thermal properties oh human skin, a review. J Invest Dermatol 69(3):333–338

    Google Scholar 

  • Cook SD, Ryaby JP, McCabe J et al (1997) Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Relat Res (337):198–207

    Google Scholar 

  • Costa IA, Dyson A (2007) The integration of acetic acid iontophoresis, orthotic therapy and physical rehabilitation for chronic plantar fasciitis: a case study. J Can Chiropr Assoc 51(3):166–174

    Google Scholar 

  • Crevenna R, Nuhr MJ, Wiesinger GF et al (2001) Langzeitbehandlung mit neuromuskulärer Elektrostimulation bei Herztransplantationskandidaten mit implantierten Herzschrittmachern. Phys Rehab Kur Med 11:212–214

    Google Scholar 

  • Crisci AR, Ferreira AL (2002) Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound in Med & Biol 28(10):1335–1341

    Google Scholar 

  • Daanen HA (2003) Finger cold-induced vasodilatation: a review. Eur J Appl Physiol 89(5):411–426

    Google Scholar 

  • Darrow H, Schulthies S, Draper D et al (1999) Serum dexamethasone levels after decadron phonophoresis. J Athl Train 34(4):338–341

    Google Scholar 

  • Demirtas RN, Öner C (1998) The treatment of lateral epicondylitis by iontophoresis of sodium salicylate and sodium diclofenac. Clin Rehabil 12(1):23–29

    Google Scholar 

  • Draper DO, Harris ST, Schulthies S et al (1998) Hot-pack and 1-MHz ultrasound treatments have an additive effect on muscle temperature increase. J Athl Train 33(1):21–24

    Google Scholar 

  • Draper DO, Anderson C, Schulthies SS et al (1998) Immediate and residual changes in dorsiflexion range of motion using an ultrasound heat and stretch routine. J Athl Train 33(2): 141–144

    Google Scholar 

  • Draper DO, Ricard MD (1995) Rate of temperature decay in human muscle following 3 MHz ultrasound: the stretching window revealed. J Athl Train 30(4):304–307

    Google Scholar 

  • D’Vaz AP, Ostor AJ, Speed CA et al (2006) Pulsed low intensity ultrasound therapy for chronic lateral epicondylitis: a randomized controlled trial. Rheumatology (Oxford) 45(5):566–570

    Google Scholar 

  • Dummer R, Bloch PH (2002) Lasertherapie der Haut. Schweiz Med Forum 3:42–47

    Google Scholar 

  • Ekim A, Armagan O, Tasioglu F et al (2007) Effect of low level laser therapy in rheumatoid arthritis patients with carpal tunnel syndrome. Swiss Med Wkly 137:347–352

    Google Scholar 

  • Ennis WJ, Lee C, Meneses P (2007) A biochemical approach to wound healing through the use of modalities. Clin Dermatol 25(1):63–72

    Google Scholar 

  • Evcik D, Kavuncu V, Cakir T et al (2007) Laser therapy in the treatment of carpal tunnel syndrome: a randomized controlled trial. Photomed Laser Surg 25(1):34–39

    Google Scholar 

  • Farkash U, Bain O, Gam A et al (2015) Low-intensity pulsed ultrasound for treating delayed union scaphoid fractures: case series. J Orthop Surg Res 10:72

    Google Scholar 

  • Gach JE, Humphreys F, Berth-Jones J (2005) Randomized, double-blind, placebo-controlled pilot study to assess the value of free radical scavengers in reducing inflammation induced by cryotherapy. Clin Exp Dermatol 30(1):14–16

    Google Scholar 

  • Gianni S, Giombini A, Moneta MR et al (2004) Low-intensity pulsed ultrasound in the treatment of traumatic hand fracture in an elite athlete. Am J Phys Med Rehabil 83(12):921–925

    Google Scholar 

  • Green BG (2004) Temperature perception and nociception. J Neurobiol 61(1):13–29

    Google Scholar 

  • Greenspan JD, Roy EA, Caldwell PA et al (2003) Thermosensory intensity and affect through the perceptible range. Somatosens Mot Res 20(1):19–26

    Google Scholar 

  • Guffey JS, Rutherford MJ, Payne W et al (1999) Skin pH changes associated with iontophoresis. J Orthop Sports Phys Ther 29(11):656–660

    Google Scholar 

  • Gum SL, Reddy GK, Stehno-Bittel L et al (1997) Combined ultrasound, electrical stimulation, and laser promote collagen synthesis with moderate changes in tendon biomechanics. Am J Phys Med 76(4):288–296

    Google Scholar 

  • Hadijargyrou M, McLeod K, Ryaby JP et al (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res 355S:216–229

    Google Scholar 

  • Hamblin MR, Demidova TN (2006) Mechanism of low level light therapy. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.553.2368&rep=rep1&type=pdf (30. 03. 2018)

  • Hayes BR, Merrick MA, Sandrey MA et al (2004) Three-MHz ultrasound heats deeper into the tissues than originally theorized. J Athl Train 39(3):230–234

    Google Scholar 

  • Hayes KW (1993) Heat and cold in the management of rheumatoid arthritis. Arthritis Care Res 6(3):156–166

    Google Scholar 

  • Hekkenberg RT, Richards A, Beissner K et al (2006) Transfer standard device to improve the traceable calibration of physiotherapy ultrasound machines. Ultrasound in Med Biol 32(9):1423–1429

    Google Scholar 

  • Helmstädter A (2001) The history of electrically-assisted transdermal drug delivery (»iontophoresis«). Pharmazie 56(7):583–587

    Google Scholar 

  • Herrick RT, Herrick S (1992) Fluidotherapy. Clinical applications and techniques. Ala Med 61:20–25

    Google Scholar 

  • Heus R, Daanen HA, Havenith G (1995) Physiological criteria for functioning of hands in the cold. A Review Appl Ergon 26(1):5–13

    Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanism of action, and selectivity for thin sensory neurons. Pharmacol Rev 43(2):143–201

    Google Scholar 

  • Hong D, Byers MR, Oswald RJ (1993) Dexamethasone treatment reduces sensory neuropeptides and nerve sprouting reactions in injured teeth. Pain 55(2):171–181

    Google Scholar 

  • Hopkins JT, McLoda TA, Seegmiller JG et al (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39(3): 223–229

    Google Scholar 

  • Hoppenrath T, Ciccone CD (2006) Is there evidence that phonophoresis is more effective than ultrasound in treating pain associated with lateral epicondylitis? Phys Ther 86(1):136–140

    Google Scholar 

  • Hsieh YL (2006) Effects of ultrasound and dicolefenac phonophoresis on inflammatory pain relief: suppression of inducible nitric oxide synthase in arthritic rats. Phys Ther 86(1): 39–49

    Google Scholar 

  • Ilbuldu E, Cakmak A, Disci R et al (2004) Comparison of laser, dry needling, and placebo laser treatments in myofascial pain syndrome. Photomed Laser Surg 22(4):306–311

    Google Scholar 

  • Irvine J, Chong SL, Amirjani N et al (2004) Double-blind randomized controlled trial of low-level laser therapy in carpal tunnel syndrome. Muscle Nerve 30(2):182–187

    Google Scholar 

  • Johannsen F, Hauschild B, Remvig L et al (1994) Low energy laser therapy in rheumatoid arthritis. Scand J Rheumatol 23(3):145–147

    Google Scholar 

  • Johns LD, Straub SJ, Howard SM (2007) Variability in effective radiation area and power output of new ultrasound transducers at 3 MHz. J Athl Train 42(3):22–28

    Google Scholar 

  • Johnson MI, Tabasam G (2003) An investigation into the analgesic effects of interferential currents and transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in otherwise pain-free volunteers. Phys Ther 83(3):208–223

    Google Scholar 

  • Johnson M, Martinson M (2007) Efficacy of electrical nerve stimulation for chronic musculoskeletal pain: a meta-analysis of randomized controlled trials. Pain 130(1–2):157–165

    Google Scholar 

  • Kahn J (2000) Iontophoresis. In: Principles and practice of electrotherapy, 4. Aufl. Churchill Livingstone, New York

    Google Scholar 

  • Kanaya F, Tajima T (1992) Effect of electrostimulation on denervated muscle. Clin Orthop Relat Res 283:296–301

    Google Scholar 

  • Karu T (1991) Low-intensity laser light action upon fibroblasts and lymphocytes. In: Ohshiro T, Calderhead RG, Wiley J et al (Hrsg) Progress in Laser Therapy. Chichester, New York

    Google Scholar 

  • Kavros SJ, Miller JL, Hanna SW (2007) Treatment of ischemic wounds with noncontact, low-frequency ultrasound: The Mayo clinic experience, 2004–2006. Adv Skin Wound Care 20(4):221–226

    Google Scholar 

  • Kelly R, Beehn C, Hansford A (2005) Effect of fluidotherapy on superficial radial nerve conduction and skin temperature. J Orthop Sports Phys Ther l 35(1):16–23

    Google Scholar 

  • Kim TY, Jung DI, Kim YI et al (2007) Anaesthetic effects of lidocaine hydrochloride gel using low frequency ultrasound of 0.5 MHz. J Pharm Pharmaceut Sci 10(1):1–8

    Google Scholar 

  • Klaiman MD, Shrader JA, Danoff JV et al (1998) Phonophoresis versus ultrasound in the treatment of common musculoskeletal conditions. Med Sci Sports Exerc 30(09):1349–1355

    Google Scholar 

  • Klucinec B, Scheidler M, Denegar C et al (2000) Transmissivity of coupling agents used to deliver ultrasound through indirect methods. J Orthop Sports Phys Ther 30(5):263–269

    Google Scholar 

  • Köstler E (1978) Die Behandlung des Lymphödems mit der Hyaluronidase-Iontophorese. Z Physiother 30:91–99

    Google Scholar 

  • Kozanoglu E, Basaran S, Guzel R et al (2003) Short term efficacy of ibuprofen phonophoresis versus continuous ultrasound therapy in knee osteoarthritis. Swiss Med Wkly 133:333–338

    Google Scholar 

  • Kristiansen TK, Ryaby JP, McCabe J et al (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound: a multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 79: 961–973

    Google Scholar 

  • Lampe KE (1998) Electrotherapy in tissue repair. J Hand Ther (2):131–139

    Google Scholar 

  • Larsen A, Kristensen G, Thorlacius-Ussing O et al (2005) The influence of ultrasound on the mechanical properties of healing tendons in rabbits. Acta Orthopaedica 76(2):225–230

    Google Scholar 

  • Leduc BE, Caya J, Tremblay S et al (2003) Treatment of calcifying tendinitis of the shoulder by acetic acid iontophoresis: a double blind randomized controlled trial. Arch Phys Med Rehabil 84:1523–1525

    Google Scholar 

  • Lester RL, Smith PJ, Mott G et al (1993) Intrinsic reinnervation – myth or reality? J Hand Surg 18B:454–460

    Google Scholar 

  • Lewis D, Lewis B, Sturrock RD (1984) Transcutaneous electrical nerve stimulation in osteoarthrosis: a therapeutic alternative? Ann Rheum Dis 43(1):47–49

    Google Scholar 

  • Li CL, Scudds RA (1995) Iontophoresis: an overview of the mechanisms and clinical application. Arthritis Care Res 8(1):51–61

    Google Scholar 

  • Lima SC, Caierao QM, Peviani SM et al (2009) Muscle and nerve response after different intervals of electrical stimulation sessions on denervated rat muscle. Am J Phys Med Rehabil 88(2):126–135

    Google Scholar 

  • Maher S (2006) Clinical question: is low-level laser therapy effective in the management of lateral epicondylitis? Physical Therapy 86(8):1161–1167

    Google Scholar 

  • Malizos KN, Hantes ME, Protopappas V et al (2006) Low-intensity pulsed ultrasound for bone healing: an overview. Injury 37 Suppl 1:S56–62

    Google Scholar 

  • Marks R, De Palma F (1999) Clinical efficacy of low power laser therapy in osteoarthritis. Physiother Res Int 4(2):141–157

    Google Scholar 

  • McAuley D (2001) Do textbooks agree on their advice on ice? Clin J Sport Med 11(2):67–72

    Google Scholar 

  • McCabe SJ, Mizgala C, Glickman L (1991) The measurement of cold sensitivity of the hand. J Hand Surg Am16(6):1037–1040

    Google Scholar 

  • Merino G, Kalia YN, Guy RH (2003) Ultrasound-enhanced transdermal transport. J Pharm Sci 92(6):1125–1137

    Google Scholar 

  • Michlovitz SL (2005) Is there a role for ultrasound and electrical stimulation following injury to tendon and nerve? J Hand Ther 18:292–296

    Google Scholar 

  • Mourad PD, Lazar DA, Curra FP et al (2001) Ultrasound accelerates functional recovery after peripheral nerve damage. Neurosurgery. 48(5):1136–1141

    Google Scholar 

  • Naeser MA, Hahn K-AK, Liebermann BE et al (2002) Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: a controlled study. Arch Phys Med Rehabil 83(7):978–988

    Google Scholar 

  • Nicolaidis SC, Williams HB (2001) Muscle preservation using an implantable electrical system after nerve injury and repair. Microsurgery 21(6):241–247

    Google Scholar 

  • Nix WA, Hopf HC (1983) Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res 252(1):21–25

    Google Scholar 

  • Nolte PA, van der Krans A, Patka P et al (2001) Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 51(4):693–702

    Google Scholar 

  • Nussbaum E (1998) The influence of ultrasound on healing tissues. J Hand Ther 11(2):140–147

    Google Scholar 

  • O’Brien C (2005) Reproducibility of the cold-induced vasodilation response in the human finger. J Appl Physiol 98(4):1134–1340

    Google Scholar 

  • Özkan N, Altan L, Bingöl Ü et al (2004) Investigation of the supplementary effect of GaAs laser therapy on the rehabilitation of human digital flexor tendons. J Clin Laser Med Surg 22(2): 105–110

    Google Scholar 

  • Osbahr DC, Cawley PW, Speer KP (2002) The effect of continuous cryotherapy on glenohumeral joint and subacromial space temperatures in the postoperative shoulder. Arthroscopy 18(7):748–754

    Google Scholar 

  • Paternostro-Sluga T, Rakos M, Hofer C et al (2002) EMG-getriggerte Elektrostimulation chronischer Armplexusparesen – eine Pilotstudie. Phys Rehab Kur Med:203–207

    Google Scholar 

  • Pergola PE, Kellogg DL Jr, Johnson JM et al (1993) Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am J Physiol 265(3 Teil 2):H785–792

    Google Scholar 

  • Peviani SM, Russo TL, Durigan JL et al (2010) Stretching and electrical stimulation regulate the metalloproteinase-2 in rat denervated skeletal muscle. Neurol Res 32(8):891–896

    Google Scholar 

  • Piravej K, Boonhong J (2004) Effect of ultrasound thermotherapy in mild to moderate carpal tunnel syndrome. J Med Assoc Thai 87 Suppl. (2):100–106

    Google Scholar 

  • Posten W, Wrone DA, Dover JS et al (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340

    Google Scholar 

  • Radandt RR (2001) Niederfrequenter Ultraschall in der Wundheilung. Phys Rehab Kur Med 11:41–50

    Google Scholar 

  • Reed BV, Ashikaga T, Fleming BC et al (2000) Effects of ultrasound and stretch on knee ligament extensibility. J Orhop Sports Phys Ther 30:341–347

    Google Scholar 

  • Rennie S (2011) Electrophysical agents – contraindications and precautions: an evidence-based approach to clinical decision making in physical therapy. Physiother Can 62(5):1–80 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031347/pdf/ptc-62-special.pdf (30. 03. 2018)

  • Robertson VJ, Chipchase LS, Laakso EL et al (2001) Guidelines for the clinical use of electrophysical agents. Australian Physiotherapy Association. http://almacen-gpc.dynalias.org/ publico/Guia%20para%20aplicacion%20Agentes%20Fisicos%20Australia%202001.pdf (18. 11. 2017)

  • Rose S, Draper DO, Schulthies SS et al (1996) The stretching window part two: rate of thermal decay in deep muscle following 1-MHz ultrasound. J Athl Train 31(2):139–143

    Google Scholar 

  • Rubin C, Bolander M, Ryaby JP et al (2001) The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am 83-A(2):259–250

    Google Scholar 

  • Ruijs AC, Jaquet JB, Daanen HA et al (2006) Cold intolerance of the hand measured by the CISS questionnaire in a normative study population. J Hand Surg Br 31(5):533–536

    Google Scholar 

  • Runeson L, Haker E (2002) Iontophoresis with cortisone in the treatment of lateral epicondylalgia (tennis elbow) – a double-blind study. Scand J Med Sci Sports 12:136–142

    Google Scholar 

  • Saini NS, Roy KS, Bansal PS et al (2002) A preliminary study on the effect of ultrasound therapy on the healing of surgically severed achilles tendons in five dogs. J Vet Med A 49:321–328

    Google Scholar 

  • Salmons S, Jarvis JC (2008) Functional electrical stimulation of denervated muscles: An experimental evaluation. Artif Organs 32(8):597–603

    Google Scholar 

  • Schindl A, Heinze G, Schindl M et al (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64(2):240–246

    Google Scholar 

  • Schindl A, Schindl M, Pernerstorfer-Schön H et al (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326

    Google Scholar 

  • Sivakumar M, Tachibana K, Pandit AB et al (2005) Transdermal drug delivery using ultrasound – theory, understanding and critical analysis. Cell Mol Biol 51, Online, OL767–OL784

    Google Scholar 

  • Smith NB (2007) Perspectives on transdermal ultrasound mediated drug delivery. Int J Nanomedicine 2(4):585–594

    Google Scholar 

  • Speed CA (2001) Therapeutic ultrasound in soft tissue lesions. Rheumatology (Oxford) 40(12):1331–1336

    Google Scholar 

  • Spielholz NI (1999) Electrical stimulation of denervated muscle. In: Nelson RM, Hayes KW, Currier DP (Hrsg) Clinical Electrotherapy, 3. Aufl. Stamford, Conn: Appleton & Lange

    Google Scholar 

  • Stein H, Lerner A (2005) How does pulsed low-intensity ultrasound enhance fracture healing? Orthopedics 28(10):1161– 1163

    Google Scholar 

  • Straub JS, Johns LD, Howard SM (2008) Variability in effective radiating area at 1 MHz affects ultrasound treatment intensity. Phys Ther 88(1):50–62

    Google Scholar 

  • Strigo IA, Carli F, Bushnell MC (2000) Effect of ambient temperature on human pain and temperature perception. Anesthesiology 92(3):699–707

    Google Scholar 

  • Sylvestre JP, Guy RH, Delgado-Charro MB (2008) In vitro optimization of dexamethasone phosphate delivery by iontophoresis. Phys Ther 88(10):1177–1185

    Google Scholar 

  • Tinazzi M, Farina S, Bhatia K et al (2005) TENS for the treatment of writer’s cramp dystonia. A randomized, placebo-controlled study. Neurology 64(11):1946–1948

    Google Scholar 

  • Tumilty S, Munn J, McDonough S et al (2010) Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed Laser Surg 28(1):3–16.

    Google Scholar 

  • van der Windt DA, van der Heijden GJ, van den Berg SG et al (1999) Ultrasound therapy for musculoskeletal disorders: a systematic review. Pain 81(3):257–271

    Google Scholar 

  • Walsh MT, Muntzer E (2002) Therapist’s management of complex regional pain syndrome (reflex sympathetic dystrophy). In: Mackin EJ, Callahan AD, Skirven TM, Schneider LH, Osterman AL (Hrsg) Rehabilitation of the hand and upper extremity, 5. Aufl. Mosby, St. Louis

    Google Scholar 

  • Walsh WR, Stephens P, Vizesi F et al (2007) Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model. Arthroscopy 23(2):197–204

    Google Scholar 

  • Wasner G, Schattschneider J, Binder A et al (2004) Topical menthol – a human model for cold pain by activation and sensitization of C nociceptors. Brain 125(5):1159–1171

    Google Scholar 

  • Watson T (2008) Electrotherapy. Evidence-based practice, 12. Aufl. Churchill Livingstone, Elsevier Edinburgh

    Google Scholar 

  • Williams HB (1996) A clinical pilot study to assess functional return following continuous muscle stimulation after nerve injury and repair in the upper extremity using a completely implantable electrical system. Microsurgery 17(11):597–605

    Google Scholar 

  • Windisch A, Gundersen K, Szabolcs MJ et al (1998) Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol 510(Teil 2):623–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beckmann-Fries, V. (2019). Elektrophysikalische Maßnahmen. In: Waldner-Nilsson, B. (eds) Handrehabilitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38926-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38926-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38923-1

  • Online ISBN: 978-3-540-38926-2

  • eBook Packages: Medicine (German Language)