Skip to main content

Infrared Heterodyne Spectroscopy of Ammonia and Ethylene in Stars

  • Conference paper

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 30))

Abstract

The study of molecules in stars has greatly expanded in scope during the past decade, principally because of the development of high resolution heterodyne spectrometers for radio astronomy and the subsequent discovery of maser emission from OH, H20, and SiO. Although infrared frequencies have a fundamental advantage for the detection of new and more complicated molecules, the development of infrared spectrometers with the required spectral resolution and sensitivity has heretofore lagged behind equivalent advances in microwave instrumentation. In stellar sources, the linewidths of molecular transitions are generally dominated by large scale mass motions rather than simple thermal or pressure-broadening effects. Nevertheless, Doppler-broadened linewidths as narrow as 1 km/s (100 MHz at 30 THz) can still be expected. Generally, the line profiles are asymmetrical, and the details of the shapes made visible by high resolution are of critical importance for unraveling the dynamics of the stellar environment. Fortunately, developments in laser and photodiode technology now bring the advantages of coherent heterodyne detection to the infrared, with the result that the vibrational transitions of molecules can now be observed with the same Doppler-limited resolution commonly used for observations of the rotational, hyperfine, and inversion transitions which occur at radio frequencies. The importance of laser heterodyne spectroscopy for astronomical observations has been demonstrated by the first detection of ammonia [1,2] and ethylene [3] in stars. In heterodyne spectroscopy, the signal radiation collected through a telescope is mixed with a local oscillator (LO) beam from a stabilized laser in a high speed photodetector. The resulting difference frequencies are then amplified over a broad radio-frequency band and analyzed in a contiguous set of radio-frequency filters. The actual resolution is determined by the chosen widths of the filters, but the ultimate achievable resolution is limited only by the spectral linewidth of the laser.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Betz, R.A. McLaren, D.L. Spears: Astrophys. J. Lett. 229, L97 (1979)

    Article  ADS  Google Scholar 

  2. R.A. McLaren, A.L. Betz: Astrophys. J. Lett. 240, L159 (1980)

    Article  ADS  Google Scholar 

  3. A.L. Betz: Astrophys. J. Lett. 244, L103 (1981)

    Article  ADS  Google Scholar 

  4. A.L. Betz: in Laser Spectroscopy III, eds. J.S. Hall and J.L. Carlsten (Springer-Verlag, 1977 ), p. 31

    Google Scholar 

  5. C. Freed: in Proc. Frequency Standards and Metrology Seminar (University Laval, Quebec, Canada, 1971 ), p. 226

    Google Scholar 

  6. C. Freed, L.C. Bradley, R.G. O’Donnell: IEEE J. Quant. Electr. QE-16, 1195 (1980)

    Google Scholar 

  7. B.G. Whitford, K.J. Siemsen, H.D. Riccius, G.R. Hanes: Opt. Commun. 14, 70 (1975)

    Article  ADS  Google Scholar 

  8. M. Skolnick: IEEE J. Quant. Electr. QE-6, 139 (1970)

    Google Scholar 

  9. C. Freed, A. Javan: Appl. Phys. Lett. 17, 53 (1970)

    Article  ADS  Google Scholar 

  10. S.M. Freund, T. Oka: Phys. Rev. A. 13, 2178 (1976)

    Article  ADS  Google Scholar 

  11. Y. Ueda, K. Shimoda: in Laser Spectroscopy II, ed. S. Haroche (Springer-Verlag, 1975 ), p. 186

    Google Scholar 

  12. J.J. Hillman, T. Kostiuk, D. Buhl, J.L. Faris, J.C. Novaco, M. J. Mumma: Optics Lett. 1, 81 (1977)

    Article  ADS  Google Scholar 

  13. A.L. Betz, R.A. McLaren: in Proc. IAU Symposium 87, Interstellar Molecules, ed. B.H. Andrew (D. Reidel, 1980 ), p. 503

    Google Scholar 

  14. Ch. Lambeau, A. Fayt, J.L. Duncan, T. Nakagawa: J. Molec. Spectrosc. 81, 227 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Betz, A.L. (1981). Infrared Heterodyne Spectroscopy of Ammonia and Ethylene in Stars. In: McKellar, A.R.W., Oka, T., Stoicheff, B.P. (eds) Laser Spectroscopy V. Springer Series in Optical Sciences, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38804-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38804-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-15380-2

  • Online ISBN: 978-3-540-38804-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics