Surface Nonlinear Optics

  • Y. R. Shen
  • C. K. Chen
  • A. R. B. de Castro
Conference paper
Part of the Springer Series in Optical Sciences book series (SSOS, volume 26)


Surface electromagnetic waves are waves propagating along the interface of two media. Their existence was predicted by SOMMERFIELD in 1909 [1]. In recent years, they have found interesting applications in the study of overlayers and molecular adsorption on surfaces [2], in probing of phase transitions [3], and in measurements of refractive indices [4]. In our laboratory, we have been interested in the nonlinear interaction of surface electromagnetic waves. The motivation is two fold. First, while nonlinear optics in the bulk is a well developed field, surface nonlinear optics is still in its infant stage. Second, we would like to look into the possibility of using surface nonlinear optics for material studies. In this paper, we describe the preliminary results of our recent venture in this area.


Raman Resonance Nonlinear Polarization Surface Electromagnetic Wave Cross Seetion Prism Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Sommerfeld, Ann. Physik 28, 665 (1909).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    W. H. Weber, Phys. Rev. Lett. 39, 153 (1977)ADSCrossRefGoogle Scholar
  3. 2a.
    J. G. Gordon and J. D. Swalen, Optics Comm. 22, 374 (1977).ADSCrossRefGoogle Scholar
  4. 3.
    V. M. Agranovich, JETP Lett. 24, 558 (1976)ADSGoogle Scholar
  5. 3a.
    K. C. Chu, C. K. Chen, and Y. R. Shen, Mol. Cryst. Liq. Cryst. 59, 97 (1980).CrossRefGoogle Scholar
  6. 4.
    N. M. Chao, K. C. Chu, and Y. R. Shen, Mol. Cyrst. Liq. Cryst. (to be published).Google Scholar
  7. 5.
    E. Kretschmann, Z. Phys. 241, 313 (1971). The surface plasmon dispersion relation of (I) is slightly modified in the Kretschmann geometry.ADSCrossRefGoogle Scholar
  8. 6.
    F. DeMartini and Y. R. Shen, Phys. Rev. Lett. 36, 216 (1976).ADSCrossRefGoogle Scholar
  9. 7.
    H. J. Simon, D. E. Mitchell, and J. G. Watson, Phys. Rev. Lett. 33, 1531 (1974)ADSCrossRefGoogle Scholar
  10. 7a.
    H. J. Simon, R. E. Benner, and J. G. Watson, Opt. Commun. 23, 245 (1977).ADSzbMATHCrossRefGoogle Scholar
  11. 8.
    N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).ADSCrossRefGoogle Scholar
  12. 9.
    C. K. Chen, A. R. B. de Castro, and Y. R. Shen, Opt. Lett. 4. 393 (1979).ADSCrossRefGoogle Scholar
  13. 10.
    See, for example, M. D. Levenson, Phys. Today 30, 45 (1977).CrossRefGoogle Scholar
  14. 11.
    C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, Phys. Rev. Lett. 43, 946 (1979).ADSCrossRefGoogle Scholar
  15. 12.
    See, for example, T. E. Furtak and J. Reyes, Surf. Sci 93, 351 (1980) and references therein.ADSCrossRefGoogle Scholar
  16. 13.
    J. E. Rowe, C. V. Shank, D. A. Zwemer, and C. A. Murray, Phys. Rev. Lett. 44, 1770 (1980).ADSCrossRefGoogle Scholar
  17. 14.
    S. M. McCall, P. M. Platzman, and P. A. Wolff (to be published).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Y. R. Shen
    • 1
    • 2
  • C. K. Chen
    • 1
    • 2
  • A. R. B. de Castro
    • 1
    • 2
  1. 1.Materials and Molecular Research DivisionLawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations