Time-Resolved Resonance Raman Techniques for Intermediates of Photolabile Systems

  • M. A. El-Sayed
Conference paper
Part of the Springer Series in Optical Sciences book series (SSOS, volume 26)


This paper summarizes the work of my group over the past four years. Different resonance Raman techniques are described which are useful in studying intermediates of photolabile systems in the millisecond, microsecond, nanosecond, and picosecond time domains. These techniques are used to study two important photobiological systems: bacteriorhodopsin (bR) and carbonmonoxy-hemoglobin (HbCO). The summary of the results of applying these techniques to study the retinal system in bR is given and discussed in terms of what is known about its photochemical proton pump cycle. The main results are 1) the largest retinal configurational changes occur in the first step (the absorption step) and 2) the Schiff base proton in (math) ionizes in 40 μs (in the bL550 → bM412 step).


Schiff Base Picosecond Laser Resonance Raman Spectrum Resonance Raman Spectroscopy Quintet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bridoux: C. R. Acad. Sci. 258, 620 (1964)Google Scholar
  2. 1a.
    M. Bridoux, A. Chapput, M. Crunelle, M. Delhaye: Adv. Raman Spectrosc. 65–69 (1973)Google Scholar
  3. 1b.
    M. Delhaye: Lan in Proceedings of the Fifth International Conference on Raman Spectroscopy, ed. by A Schmid et al. (1976) pp. 747–752Google Scholar
  4. 1c.
    M. Bridoux, A. Deffontaine, C. Reiss: C. R. Acad. Sci. 282, 771 (1976)Google Scholar
  5. 1d.
    M. Bridoux, M. Delhaye: Lan in Advances in Infrared and Raman Spectroscopy, Vol. 2, ed. by R.J.H. Clark, R.E. Hester (Heyden, London 1976) p. 140Google Scholar
  6. 1e.
    P.P. Yaney: J. Opt. Soc. Am. 62, 1297 (1972)ADSCrossRefGoogle Scholar
  7. 1f.
    R.P. Van Duyne, D.L. Jeanmaire, D.F. Shriver: Anal. Chem. 46, 213 (1974)CrossRefGoogle Scholar
  8. 1g.
    F.E. Lyttle, M.S. Kelsey: Anal. Chem. 46, 855 (1974)CrossRefGoogle Scholar
  9. 1h.
    M. Nicol, J. Wiget, C.K. Wu: Proceedings of the Fifth International Conference on Raman Spectroscopy, ed. by Schmid et al. (1976) pp. 504–505Google Scholar
  10. 2.
    J. Terner, T.G. Spiro, M. Nagumo, M.F. Nicol, M.A. El-Sayed: J. Am. Chem. Soc. 102, 3238 (1980)CrossRefGoogle Scholar
  11. 3.
    M. Coppey, H. Tourbez, P. Valat, B. Alpert: Nature 284, 568 (1980)ADSCrossRefGoogle Scholar
  12. 4.
    For a previous review see “Time-Resolved Resonance Raman Spectroscopy in Photochemistry and Photobiology”, in Multichannel Image Detectors in Chemistry, ACS SYMPOSIUM SERIES Bk. 102, Chap. 10 (1979) pp. 215–227Google Scholar
  13. 5.
    A. Campion, J. Terner, M.A. El-Sayed: Nature 265, 659 (1977)ADSCrossRefGoogle Scholar
  14. 6.
    A. Campion, M.A. El-Sayed, J. Terner: Biophys. J. 20, 369 (1977)CrossRefGoogle Scholar
  15. 7.
    J. Terner, A. Campion, M.A. El-Sayed: Proc. Natl. Acad. Sci. USA 74, 5212 (1977)ADSCrossRefGoogle Scholar
  16. 8.
    J. Terner, C.L. Hsieh, A.R. Burns, M.A. El-Sayed: Proc. Natl. Acad. Sci. USA 76, 3046 (1979)ADSCrossRefGoogle Scholar
  17. 9.
    W.H. Woodruff, S. Farquharson: Science 201, 831 (1978)ADSCrossRefGoogle Scholar
  18. 10.
    K.B. Lyons, J.M. Friedman, P.A. Fleury: Nature 275, 565 (1978);ADSCrossRefGoogle Scholar
  19. R.F. Dallinger, J.R. Nestor, T.G. Spiro: J. Am. Chem. Soc. 100, 6251 (1978)CrossRefGoogle Scholar
  20. 11.
    R. Mathies, T.B. Freedman, L. Stryer: J. Mol. Biol. 109, 367 (1977)CrossRefGoogle Scholar
  21. 12.
    M.A. Marcus, A. Lewis: Science 195, 1328 (1977)ADSCrossRefGoogle Scholar
  22. 13.
    M.A. El-Sayed, J. Terner: J. Photochem. Photobiol. 30, 125 (1979)CrossRefGoogle Scholar
  23. 14.
    R.H. Lozier, R.A. Bogomolni, W. Stoeckenius: Biophys. J. 15, 955 (1975)ADSCrossRefGoogle Scholar
  24. 15.
    D. Oesterhelt: Angew. Chem. Int. Ed. Engl. 15, 17 (1976)CrossRefGoogle Scholar
  25. 16.
    M.J. Pettei, A.P. Yudd, K. Nakanishi, R. Henselman, W. Stoeckenius: Biochemistry 16, 1955 (1977)CrossRefGoogle Scholar
  26. 17.
    G. Eyring, R. Mathies: Proc. Natl. Acad. Sci. USA 75, 4642 (1979)Google Scholar
  27. 18.
    B. Honig, A.D. Greenburg, V. Dinur, T. Ebrey: Biochemistry 15, 4593 (1976)CrossRefGoogle Scholar
  28. 19.
    R. Kornstein, K. Muszkat, S. Sharafy-Ozeri: J. Am. Chem. Soc. 95, 6177 (1973)CrossRefGoogle Scholar
  29. 20.
    L.J. Noe, W.G. Eisert, P.M. Rentzepis: Proc. Natl. Acad. Sci. USA 75, 573 (1978)ADSCrossRefGoogle Scholar
  30. 21.
    C.V. Shank, E.P. Ippen, R. Bersohn: Science 193, 50 (1976)ADSCrossRefGoogle Scholar
  31. 22.
    B.J. Greene, R.M. Hochstrasser, R.B. Weisman, W.A. Eaton: Proc. Natl. Acad. Sci. USA 75, 5255 (1978)ADSCrossRefGoogle Scholar
  32. 23.
    T.G. Spiro, J.M. Burke: J. Am. Chem. Soc. 98, 5482 (1976)CrossRefGoogle Scholar
  33. 24.
    J.K. Beattie, N. Sutin, D.H. Turner, G.W. Glynn: J. Am. Chem. Soc. 95, 2052 (1973);CrossRefGoogle Scholar
  34. J.K. Beattie, R.A. Binstead, R.J. West: J. Am. Chem. Soc. 100, 3044 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • M. A. El-Sayed
    • 1
  1. 1.Department of ChemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations