Advertisement

Generation of UV Radiation (250–260 nm) from Intracavity Doubling of a Single-Mode Ring Dye Laser

  • C. R. Webster
  • L. Wöste
  • R. N. Zare
Conference paper
Part of the Springer Series in Optical Sciences book series (SSOS, volume 26)

Abstract

Molecules whose electronic transitions lie in the UV portion of the electromagnetic spectrum far outnumber those in the visible. Consequently, it is of considerable chemical interest to extend tunable coherent sources to shorter wavelengths. Potential applications are numerous, including photochemical, kinetic, analytical, and spectroscopic studies. We report here the construction of an intracavity-doubled cw ring dye laser producing single-mode UV output in the range 250–260 nm with a free-running jitter of about ±50 MHz over a time interval of a few seconds. High resolution spectra of the Hg 3P1 - 1S0 transition at 253.7 nm are presented. Fluorescence excitation of natural mercury in a bulb yields a spectrum in which the resolution of the hyperfine structure is Doppler limited, whereas excitation of an atomic beam allows subDoppler resolution of these features.

Keywords

Pump Power Atomic Beam Ring Laser Birefringent Filter Doubling Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3639 (1968);Google Scholar
  2. 1a.
    S. Blit, E. G. Weaver, T. A. Rabson, and F. K. Tittel, Appl. Optics 17, 721 (1978);ADSCrossRefGoogle Scholar
  3. 1b.
    J. Paisner, M. L. Spaeth, D. C. Gerstenberger and I. W. Ruderman, Appl. Phys. Letters 32, 476 (1978).ADSCrossRefGoogle Scholar
  4. 2.
    R. Wallenstein and T. W. Hansen, Opt. Communications 14, 353 (1975).ADSCrossRefGoogle Scholar
  5. 3.
    C. E. Wagstaff and M. H. Dunn, J. Phys. D: Appl. Phys. 12, 355 (1979).ADSCrossRefGoogle Scholar
  6. 4.
    R. P. Mariella, J. Chem. Phys. 71, 94 (1979).ADSCrossRefGoogle Scholar
  7. 5.
    P. N. Clough and J. Johnston, Chem. Phys. Letters 71, 253 (1980).ADSCrossRefGoogle Scholar
  8. 6.
    H. W. Kogelnik, E. P. Ippen, A. Dienes and C. V. Shank, IEEE J. Quant. Electron, QE-8, 373 (1972).ADSCrossRefGoogle Scholar
  9. 7.
    W. D. Johnston and P. K. Runge, IEEE. J. Quant. Electron. QE-8, 724 (1972).ADSCrossRefGoogle Scholar
  10. 8.
    M. H. Dunn and A. I. Ferguson, Opt. Communications 20, 214 (1977).ADSCrossRefGoogle Scholar
  11. 9.
    R. C. Miller, G. D. Boyd and A. Savage, Appl. Phys. Letters 6, 77 (1965).ADSCrossRefGoogle Scholar
  12. 10.
    P. W. Smith, IEEE J. Quant. Electron. QE-4, 485 (1968).ADSCrossRefGoogle Scholar
  13. 11.
    S. M. Jarrett, and J. F. Young, Laser Focus 14, 16 (1978).Google Scholar
  14. 12.
    F. Bitter, Appl. Optics 1, 1 (1962).ADSCrossRefGoogle Scholar
  15. 13.
    A. I. Ferguson and M. H. Dunn, IEEE J. Quant. Electron. QE-13, 751 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • C. R. Webster
    • 1
  • L. Wöste
    • 1
  • R. N. Zare
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations