Nonlinear Optics of Cryogenic Liquids

  • S. R. J. Brueck
  • H. Kildal
Conference paper
Part of the Springer Series in Optical Sciences book series (SSOS, volume 26)


Cryogenic liquids are being used as the active media for an increasing number of nonlinear optical devices. Results have been reported on stimulated Raman oscillators and amplifiers[1–4], third-harmonic generators[5], four-wave difference frequency generators[6, 7] and infrared Kerr switches.[8] Photo-acoustic and photo-refractive measurements of weak absorptions in these liquids are also a subject of current interest [9, 10], In this paper, we report third-harmonic generation (THG) and ac Kerr effect measurements which allow us to obtain the electronic nonlinearity (hyperpolarizability), the vibrational two-photon resonance nonlinearity, and the molecular reorientation contributions to the third-order susceptibilities, x(3) of the cryogenic liquids CO, O2, N2 and Ar. Measurements of the electrostrictive and absorptive coupling of a laser radiation field to the liquid hydrodynamic modes are presented. These measurements are of interest because of their implications for the efficiencies and limitations of the nonlinear optical devices. Further, the relative simplicity of these media allow many of these quantities to be calculated or extrapolated from low density gas-phase measurements for comparison with these results. This should lead to an increased understanding of liquid-state properties.


Difference Frequency Generator Hydrodynamic Mode Cryogenic Liquid Probe Laser Beam Vibrational Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Grun, A. K. McQuillan and B. P. Stoicheff, Phys. Rev. 180, 61 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    A. Z. Graziuk and J. G. Zubarev, Appl. Phys. 17, 211 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    R. Frey, F. Pradere, J. Lukasik and J. Ducuing, Optics Commun. 22, 335 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    E. Wild and M. Maier, J. Appl. Phys. 51., 3078 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    S. R. J. Brueck and H. Kildal, Opt. Lett. 2, 33 (1978);ADSCrossRefGoogle Scholar
  6. 5a.
    H. Kildal and S. R. J. Brueck, IEEE J. Quantum Electron. QE-16, 566 (1980).ADSCrossRefGoogle Scholar
  7. 6.
    R. D. McNair and M. L. Klein, Appl. Phys. Lett. 31, 750 (1977);ADSCrossRefGoogle Scholar
  8. 6a.
    R. D. McNair and M. L. Klein, Appl. Phys. Lett. 32, 346 (E) (1978).ADSCrossRefGoogle Scholar
  9. 7.
    H. Kildal and S. R. J. Brueck, Appl. Phys. Lett. 32, 173 (1978).ADSCrossRefGoogle Scholar
  10. 8.
    S. R. J. Brueck and H. Kildal, Appl. Phys. Lett. 35, 665 (1979).ADSCrossRefGoogle Scholar
  11. 9.
    C. K. N. Patel and A. C. Tarn, Appl. Phys. Lett. 34, 467 (1979);ADSCrossRefGoogle Scholar
  12. 9a.
    C. K. N. Patel and A. C. Tarn, Appl. Phys. Lett. 34, 760 (1979).ADSCrossRefGoogle Scholar
  13. 10.
    S. R. J. Brueck, H. Kildal and L. J. Belanger, Optics Commun. 34, 199 (1980).ADSCrossRefGoogle Scholar
  14. 11.
    S. R. J. Brueck, Chem. Phys. Lett. 53, 273 (1978).ADSCrossRefGoogle Scholar
  15. 12.
    Helge Kildal and S. R. J. Brueck, J. Chem. Phys. (to be published, November 1980).Google Scholar
  16. 13.
    W. F. Calaway and G. E. Ewing, J. Chem. Phys. 63, 2842 (1975).ADSCrossRefGoogle Scholar
  17. 14.
    N. Legay-Somma ire and F. Legay, Chem. Phys. Lett. 52, 213 (1977).ADSCrossRefGoogle Scholar
  18. 15.
    P. D. McWane and D. A. Sealer, Appl. Phys. Lett. 8, 278 (1966).ADSCrossRefGoogle Scholar
  19. 16.
    J. Bruining and J. H. R. Clarke, Chem. Phys. Lett. 31, 355 (1975).ADSCrossRefGoogle Scholar
  20. 17.
    N. J. Bridge and A. D. Buckingham, Proc. Roy. Soc. London, Ser. A 295, 334 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. R. J. Brueck
    • 1
  • H. Kildal
    • 1
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations