Skip to main content

Constantin Merezhkowsky and the Endokaryotic Hypothesis

  • Chapter
Origin of Mitochondria and Hydrogenosomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi J, Hasegawa M (1996) Computer science monograph 28. Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395.

    Article  PubMed  CAS  Google Scholar 

  • Amiri H, Karlberg O, Andersson SGE (2003) Deep origin of plastid/parasite ATP/ADP translocases. J Mol Evol 56:137–150.

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Curland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Sjögren AM, Davis LA, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13:94–104.

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Logsdon JM jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17:1456–1466.

    PubMed  CAS  Google Scholar 

  • Baker BJ, Hugenholtz P, Dawson SC, Banfield JF (2003) Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. Appl Environ Microbiol 69:5512–5518.

    Article  PubMed  CAS  Google Scholar 

  • Beninati T, Lo N, Sacchi L, Genchi C, Noda H, Bandi C (2004) A novel alpha-Proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus. Appl Environ Microbiol 70:2596–2602.

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Block CA, Perna NT, Burland V, Riley M et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462.

    Article  PubMed  CAS  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328.

    Article  PubMed  CAS  Google Scholar 

  • Boussau B, Karlberg EO, Frank AC, Legault B-A, Andersson SGE (2004) Computational inference of scenarios for alphα-Proteobacterial genome evolution. Proc Natl Acad Sci USA 101:9722–9727.

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F, Baltz D, Baltz T (1998) Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc Natl Acad Sci USA 95:7963–7968.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Philippe H (1999) Archaea sister-group of Bacteria? Implications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16:817–825.

    PubMed  CAS  Google Scholar 

  • Brochier C, Philippe H, Moreira D (2000) The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 16:529–533.

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Bapteste E, Moreira D, Philippe H (2002) Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502.

    PubMed  CAS  Google Scholar 

  • Brown JR, Gentry D, Becker JA, Ingraham K, Holmes DJ, Stanhope MJ (2003) Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep 4:692–698.

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG et al (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273:1058–1072.

    Google Scholar 

  • Canback B, Andersson SGE, Kurland CG (2002) The global phylogeny of glycolytic enzymes. Proc Natl Acad Sci USA 99:6097–6102.

    Article  PubMed  CAS  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987) Eukaryots with no mitochondria. Nature 326:332–333.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266.

    Article  PubMed  CAS  Google Scholar 

  • Culligan KM, Meyer-Gauen G, Lyons-Weiler J, Hays JB (2000) Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res 28:463–471.

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Schuster S, Snel B, Huynen M, Bork P (1999) Pathway alignment: application to comparative analysis of glycolytic enzymes. Biochem J 343:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301:829–832.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129.

    Article  PubMed  CAS  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391.

    Article  PubMed  CAS  Google Scholar 

  • Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent' as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165.

    Google Scholar 

  • Embley TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8:624–629.

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Horner DS, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria. Trends Ecol Evol 12:437–441.

    Article  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV, Sinitsyn BV (1999) A groE-based phylogenetic analysis shows the closest evolutionary relationship of mitochondria to obligate intracytoplasmic bacterium Rickettsia prowazekii. In: Raoult D, Brouqui P (eds) Rickettsiae and rickettsial diseases at the turn of the third millennium. Elsevier, Paris, pp 31–37.

    Google Scholar 

  • Emelyanov VV (2001a) Rickettsiaceae, rickettsia-like endosymbionts, and the origin of mitochondria. Biosci Rep 21:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2001b) Evolutionary relationship of rickettsiae and mitochondria. FEBS Lett 501:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2002) Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental difference to organellar Hsp70 and Hsp60 evolution. Gene 299:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003a) Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003b) Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol Lett 226:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003c) Common evolutionary origin of mitochondrial and rickettsial respiratory chains. Arch Biochem Biophys 420:130–141.

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660.

    Article  PubMed  CAS  Google Scholar 

  • Faguy DM, Doolittle WF (1998) Cytoskeletal proteins: the evolution of cell division. Curr Biol 8:R338–R341.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1999) PHYLIP – Phylogeny inference package, version 3.6. University of Washington, Seattle.

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford.

    Google Scholar 

  • Feng D-F, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94:13028–13033.

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T, Huynen MA (2003) Reconstruction of the protomitochondrial metabolism. Science 301:609.

    Article  PubMed  CAS  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ, Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97:3304–3308.

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687.

    Article  PubMed  CAS  Google Scholar 

  • Gribaldo S, Cammarano P (1998) The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47:508–516.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiol Mol Biol Rev 62:1435–1491.

    PubMed  CAS  Google Scholar 

  • Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402.

    Article  PubMed  CAS  Google Scholar 

  • Hackstadt T (1996) The biology of rickettsiae. Infect Agents Dis 5:127–143.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Sánchez LB, Shirakura T, Müller M, Hasegawa M (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci USA 95:6860–6865.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister M, van der Klei A, Rotte C, van Grinsven KWA, van Hellemond JJ, Henze K, Tielens AGM, Martin W (2004) Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429.

    Article  PubMed  CAS  Google Scholar 

  • Horiike T, Hamada K, Miyata D, Shinozawa T (2004) The origin of eukaryotes is suggested as the symbiosis of pyrococcus into gamma-Proteobacteria by phylogenetic tree based on gene content. J Mol Evol 59:606–619.

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Env Microbiol 1:357–367.

    Article  CAS  Google Scholar 

  • Horner DS, Pesole G (2004) Phylogenetic analyses: a brief introduction to methods and their application. Expert Rev Mol Diagn 4:339–350.

    Article  PubMed  CAS  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806.

    Article  PubMed  CAS  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins C, Samudrala R, Anderson I, Hedlund BP, Petroni G, Michailova N, Pinel N, Overbeek R, Rosati G, Staley JT (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 99:17049–17054.

    Google Scholar 

  • John P, Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondriaon. Nature 254:495–498.

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Seifert JL (2002) Life and the evolution of Earth's atmosphere. Science 296:1066–1068.

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1997) Evidence that eukaryotic triose-phosphate isomerase is of α-Proteobacterial origin. Proc Natl Acad Sci USA 94:1270–1275.

    Article  PubMed  CAS  Google Scholar 

  • Kollman JM, Doolittle RF (2000) Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J Mol Evol 51:173–181.

    PubMed  CAS  Google Scholar 

  • Kumar S, Rzhetsky A (1996) Evolutionary relationships of eukaryotic kingdoms. J Mol Evol 42:183–193.

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820.

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (1999) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9:642–648.

    Article  PubMed  CAS  Google Scholar 

  • Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R (2000) Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol 17:213–223.

    PubMed  CAS  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356.

    Article  PubMed  CAS  Google Scholar 

  • Linka N, Hurka H, Lang BF, Burger G, Winkler HH, Stamme C, Urbani C, Seil I, Kusch J, Neuhaus HE (2003) Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Harris JC (2002) Giardia: highly evolved parasite or early branching eukaryote? Trends Microbiol 10:122–127.

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24:88–93.

    Article  PubMed  Google Scholar 

  • Loy JK, Dewhirst FE, Weber W, Frelier PF, Garbar TL, Tasca SI, Templeton JW (1996) Molecular phylogeny and in situ detection of the etiological agent of necrotizing hepatopancreatitis in shrimp. Appl Env Microbiol 62:3439–2445.

    CAS  Google Scholar 

  • Margulis L (1996) Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky's 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche'. Eur J Phycol 34:287–295.

    Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–85.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origin of eukaryotes, their ATP-producing organelles (mitochondria and hydsrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539.

    Article  PubMed  CAS  Google Scholar 

  • Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:277–303, 321–347, 353–367.

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889.

    PubMed  Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917.

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6.

    PubMed  CAS  Google Scholar 

  • Poole AM, Phillips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. Biosystems 69:163–185.

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Hirt RP, Williams BAP, Embley TM (2003) Horizontal gene transfer and the evolution of parasitic Protozoa. Protist 154:17–32.

    Article  PubMed  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2002) A methodological bias toward overestimation of molecular evolutionary time scales. Proc Natl Acad Sci USA 99:8112–8115.

    Article  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274.

    Article  CAS  Google Scholar 

  • Sapp J, Carrapiço F, Zolotonosov M (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist Philos Life Sci 24:413–440.

    Article  PubMed  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de ciècle. Science 283:1488–1493.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, Wagner M, Horn M (2004) ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J Bacteriol 186:683–691.

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247.

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution archaeal and proteobacterial gene content. Genome Res 12:17–25.

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML (1997) History assignment: when was the mitochondrion founded? Curr Opin Genet Dev 7:792–799.

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35.

    Article  PubMed  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759.

    Google Scholar 

  • Strimmer K, von Haeseler A (1997) Likelihood mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94:6815–6819.

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*–phylogenetic analysis using parsimony (* and other methods), version 4.0. Sinauer, Sunderland.

    Google Scholar 

  • Tielens AGM, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don't know them. Trends in Biochem Sci 27:564–572.

    Article  CAS  Google Scholar 

  • Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulfur protein maturation. Nature 426:172–176.

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44.

    Article  PubMed  Google Scholar 

  • van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ER (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J 21:572–579.

    Article  PubMed  Google Scholar 

  • Vellai T, Takács K, Vida G (1998) A new aspect to the origin and evolution of eukaryotes. J Mol Evol 46:499–507.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Emelyanov, V.V. (2007). Constantin Merezhkowsky and the Endokaryotic Hypothesis. In: Martin, W.F., Müller, M. (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38502-8_9

Download citation

Publish with us

Policies and ethics