Advertisement

Potential Distribution Methods and Free Energy Models of Molecular Solutions

  • Lawrence R. Pratt
  • Dilip Asthagiri
Chapter
Part of the Springer Series in CHEMICAL PHYSICS book series (CHEMICAL, volume 86)

Keywords

Free Energy Partition Function Hydrophobic Effect Boltzmann Factor Hydration Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pratt, L. R., Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.”, Annu. Rev. Phys. Chem. 2002, 53, 409-436CrossRefGoogle Scholar
  2. 2.
    Pohorille, A.; Pratt, L. R., Cavities in molecular liquids and the theory of hydrophobic solubilities, J. Am. Chem. Annu. 1990, 112, 5066-5074CrossRefGoogle Scholar
  3. 3.
    Pratt, L. R.; Pohorille, A., Theory of hydrophobicity: transient cavities in molecular liquids, Proc. Natl Acad. Sci. USA 1992, 89, 2995-2999CrossRefGoogle Scholar
  4. 4.
    Hummer, G.; Garde, S.; García, A. E.; Pohorille, A.; Pratt, L. R., An information theory model of hydrophobic interactions, Proc. Natl Acad. Sci. USA 1996, 93, 8951-8955CrossRefGoogle Scholar
  5. 5.
    Gomez, M. A.; Pratt, L. R.; Hummer, G.; Garde, S., Molecular realism in default models for information theories of hydrophobic effects, J. Phys. Chem. B 1999, 103, 3520-3523CrossRefGoogle Scholar
  6. 6.
    Garde, S.; Hummer, G.; García, A. E.; Paulaitis, M. E.; Pratt, L. R., Origin of entropy convergence in hydrophobic hydration and protein folding, Phys. Rev. Lett. 1996, 77, 4966-4968CrossRefGoogle Scholar
  7. 7.
    Pratt, L. R.; Pohorille, A., Hydrophobic effects and modeling of biophysical aqueous solution interfaces, Chem. Rev. 2002, 102, 2671-2691CrossRefGoogle Scholar
  8. 8.
    Ashbaugh, H. S.; Asthagiri, D.; Pratt, L. R.; Rempe, S. B., Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory, Biophys. Chem. 2003, 105, 323-338CrossRefGoogle Scholar
  9. 9.
    Ashbaugh, H. S.; Pratt, L. R., Colloquium: Scaled particle theory and the length scales of hydrophobicity, Rev. Mod. Phys. 2006, 78, 159-178CrossRefGoogle Scholar
  10. 10.
    Beck, T. L.; Paulaitis, M. E.; Pratt, L. R., The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press: Cambridge, 2006Google Scholar
  11. 11.
    Hammersley, J. M.; Handscomb, D. C., Monte Carlo Methods, Chapman and Hall: London, 1964Google Scholar
  12. 12.
    Asthagiri, D.; Pratt, L. R.; Paulaitis, M. E.; Rempe, S. B., Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals, J. Am. Chem. Soc. 2004, 126, 1285-1289CrossRefGoogle Scholar
  13. 13.
    Kirkwood, J. G.; Poirier, J. C., The statistical mechanical basis of the Debye-H ückel theory of strong electrolytes, J. Phys. Chem. 1954, 86, 591-596CrossRefGoogle Scholar
  14. 14.
    Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 1963, 39, 2808-2812CrossRefGoogle Scholar
  15. 15.
    Jackson, J. L.; Klein, L. S., Potential distribution method in equilibrium statistical mechanics, Phys. Fluids 1964, 7, 228-231CrossRefGoogle Scholar
  16. 16.
    Widom, B., Potential-distribution theory and the statistical mechanics of fluids, J. Phys. Chem. 1982, 86, 869-872CrossRefGoogle Scholar
  17. 17.
    Stell, G. Mayer-Montroll equations (and some variants) through history for fun and profit. in The Wonderful World of Stochastics A Tribute to Elliot W. Montroll, Shlesinger, M. F.; Weiss, G. H., Eds., vol. XII, Studies in Statistical Mechanics. Elsevier: New York, 1985, pp. 127-156Google Scholar
  18. 18.
    Lebowitz, J. L.; Percus, J. K.; Verlet, L., Ensemble dependence of fluctuations with application to machine computations, Phys. Rev. 1967, 153, 250CrossRefGoogle Scholar
  19. 19.
    Resnick, S. I., A Probability Path, Birkha üser: New York, 2001Google Scholar
  20. 20.
    Imai, T.; Hirata, F., Partial molar volume and compressibility of a molecule with internal degrees of freedom., J. Chem. Phys. 2003, 119Google Scholar
  21. 21.
    Bennett, C. H., Efficient estimation of free-energy differences from Monte Carlo data, J. Comp. Phys. 1976, 22, 245-268CrossRefGoogle Scholar
  22. 22.
    Ciccotti, G.; Frenkel, D.; McDonald, I. R., Simulation of Liquids and Solids. Mole-cular Dynamics and Monte Carlo Methods in Statistical Mechanics, North-Holland: Amsterdam, 1987Google Scholar
  23. 23.
    . Frenkel, D. Free-energy computation and first-order phase transitions. in International School of Physics ‘Enrico Fermi’, vol. XCVII. Soc. Italiana di Fisica: Bologna, 1986, pp. 151-188Google Scholar
  24. 24.
    Shing, K. S.; Chung, S. T., Computer-simulation methods for the calculation of solubil-ity in supercritical extraction systems, J. Phys. Chem. 1987, 91, 1674-1681CrossRefGoogle Scholar
  25. 25.
    Smith, P. E., Computer simulation of cosolvent effects on hydrophobic hydration, J. Phys. Chem. B 1999, 103, 525-534CrossRefGoogle Scholar
  26. 26.
    . Callen, H. B., Thermodynamics, [2nd edition]. See Chapter 5Google Scholar
  27. 27.
    Wood, R. H.; Yezdimer, E. M.; Sakane, S.; Barriocanal, J. A.; Doren, D. J., Free energies of solvation with quantum mechanical interaction energies from classical mechanical simulations, J. Chem. Phys. 1999, 110, 1329-37CrossRefGoogle Scholar
  28. 28.
    Sakane, S.; Yezdimer, E. M.; Liu, W. B.; Barriocanal, J. A.; Doren, D. J.; Wood, R. H., Exploring the ab initio/classical free energy perturbation method: the hydration free energy of water, J. Chem. Phys. 2000, 113, 2583-93CrossRefGoogle Scholar
  29. 29.
    Wood, R. H.; Liu, W. B.; Doren, D. J., Rapid calculation of the structures of solutions with ab initio interaction potentials., J. Phys. Chem. A 2002, 106, 6689-6693CrossRefGoogle Scholar
  30. 30.
    Liu, W. B.; Sakane, S.; Wood, R. H.; Doren, D. J., The hydration free energy of aqueous Na+ and Cl at high temperatures predicted by ab initio/classical free energy pertur-bation: 973 K with 0.535 g/cm3 and 573 K with 0.725 g/cm3 , J. Phys. Chem. A 2002, 106,1409-1418CrossRefGoogle Scholar
  31. 31.
    Sakane, S.; Liu, W. B.; Doren, D. J.; Shock, E. L.; Wood, R. H., Prediction of the Gibbs energies and an improved equation of state for water at extreme conditions from ab initio energies with classical simulations, Geochim. Cosmochim. Acta 2001, 65, 4067-4075CrossRefGoogle Scholar
  32. 32.
    Liu, W. B.; Wood, R. H.; Doren, D. J., Hydration free energy and potential of mean force for a model of the sodium chloride ion pair in supercritical water with ab initio solute-solvent interactions, J. Chem. Phys. 2003, 118, 2837-2844CrossRefGoogle Scholar
  33. 33.
    Liu, W. B.; Wood, R. H.; Doren, D. J., Density and temperature dependences of hydration free energy of Na+ and Cl at supercritical conditions predicted by a ini-tio/classical free energy perturbation, J. Phys. Chem. B 2003, 107, 9505-9513CrossRefGoogle Scholar
  34. 34.
    Pettitt, B. M., A Perspective on “Volume and heat of hydration of ions” - Born M. (1920) Z Phys. 1 : 45, Theor. Chem. Acc. 2000, 103, 171-172Google Scholar
  35. 35.
    Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling, J. Comput. Phys. 1977, 23, 187-199CrossRefGoogle Scholar
  36. 36.
    Hertz, J.; Krogh, A.; Palmer, R. G., Introduction to the Theory of Neural Computation, Addison-Wesley: Redwood City, CA, 1991Google Scholar
  37. 37.
    Plishke, M.; Bergerson, B., Equilibrium Statistical Physics, World Scientific: Singapore, 1994Google Scholar
  38. 38.
    Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods, Volume I: Basics, Wiley-Interscience: New York, 1986CrossRefGoogle Scholar
  39. 39.
    . Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran 77, [2nd edition]Google Scholar
  40. 40.
    Hummer, G.; Pratt, L. R.; García, A. E., Multistate Gaussian model for electrostatic solvation free energies, J. Am. Chem. Soc. 1997, 119, 8523-8527CrossRefGoogle Scholar
  41. 41.
    Pratt, L. R.; Pohorille, A. in Proceedings of the EBSA 1992 International Workshop on Water-Biomolecule Interactions, Palma, M. U.; Palma-Vittorelli, M. B.; Parak, F., Eds. Societ á Italiana de Fisica: Bologna, 1993, pp. 261-268Google Scholar
  42. 42.
    Pohorille, A.; Wilson, M. A., Molecular structure of aqueous interfaces., Theochem 1993,284,271-98CrossRefGoogle Scholar
  43. 43.
    Pohorille, A., Transient cavities in liquids and the nature of the hydrophobic effect, Pol. J. Chem. 1998, 72, 1680-1690Google Scholar
  44. 44.
    Pratt, L. R., Hydrophobic effects Wiley: Chichester, 1998, pp. 1286-1294Google Scholar
  45. 45.
    Pohorille, A.; Wilson, M. A., Excess chemical potential of small solutes across water-membrane and water-hexane interfaces, J. Chem. Phys. 1996, 104, 3760-3773CrossRefGoogle Scholar
  46. 46.
    Pratt, L. R.; LaViolette, R. A., Quasi-chemical theories of associated liquids, Mol. Phys. 1998,94,909-915CrossRefGoogle Scholar
  47. 47.
    Pratt, L. R.; Rempe, S. B. Quasi-chemical theory and implicit solvent models for sim-ulations. in Simulation and Theory of Electrostatic Interactions in Solution. Computa-tional Chemistry, Biophysics, and Aqueous Solutions, Pratt, L. R.; Hummer, G., Eds., vol. 492, AIP Conference Proceedings. American Institute of Physics, Melville: New York, 1999, pp. 172-201Google Scholar
  48. 48.
    Paulaitis, M. E.; Pratt, L. R., Hydration theory for molecular biophysics, Adv. Prot. Chem. 2002, 62, 283-310CrossRefGoogle Scholar
  49. 49.
    Mathews, J.; Walker, R. L., Mathematical Methods of Physics, Benjamin: New York, 1964Google Scholar
  50. 50.
    Frisch, M. J. et al. Gaussian 98 (Revision A.2), 1998, Gaussian, Inc.: Pittsburgh PAGoogle Scholar
  51. 51.
    Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648CrossRefGoogle Scholar
  52. 52.
    Asthagiri, D.; Pratt, L. R.; Ashbaugh, H. S., Absolute hydration free energies of ions, ion-water clusters, and quasi-chemical theory, J. Chem. Phys. 2003, 119, 2702-2708CrossRefGoogle Scholar
  53. 53.
    Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A., The hydration state of HO (aq), Chem. Phys. Lett. 2003, 380, 530-535CrossRefGoogle Scholar
  54. 54.
    Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A., HO (aq) hydration and mobility, Proc. Natl Acad. Sci. USA 2004, 101, 7229-7233CrossRefGoogle Scholar
  55. 55.
    Asthagiri, D.; Pratt, L. R.; Kress, J. D., Ab initio molecular dynamics and quasichemical study of H+ (aq)., Proc. Natl Acad. Sci. USA 2005, 102, 6704-6708CrossRefGoogle Scholar
  56. 56.
    Pratt, L. R.; LaViolette, R. A.; Gomez, M. A.; Gentile, M. E., Quasi-chemical theory for the statistical thermodynamics of the hard-sphere fluid, J. Phys. Chem. B 2001, 105, 11662-11668CrossRefGoogle Scholar
  57. 57.
    Pratt, L. R.; Ashbaugh, H. S., Self-consistent molecular field theory for packing in classical liquids, Phys. Rev. E 2003, 68, 021505CrossRefGoogle Scholar
  58. 58.
    Allen, M .P.; Tildesley, D. J., Computer Simulation of Liquids, Oxford Science: Oxford, 1987Google Scholar
  59. 59.
    . Frenkel, D.; Smit, B., Understanding Molecular Simulation. From Algorithms to Applications, [2nd edition]Google Scholar
  60. 60.
    Gallicchio, E.; Kubo, M. M.; Levy, R. M., Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation, J. Phys. Chem. B 2000, 104, 6271-6285CrossRefGoogle Scholar
  61. 61.
    Grossman, J. C.; Schwegler, E.; Galli, G., Quantum and classical molecular dynamics simulations of hydrophobic hydration structure around small solutes, J. Phys. Chem. B 2004,108,15865-15872CrossRefGoogle Scholar
  62. 62.
    Raschke, T. M.; Levitt, M., Detailed hydration maps of benzene and cyclohexane reveal distinct water structures, J. Phys. Chem. B 2004, 108, 13492-13500CrossRefGoogle Scholar
  63. 63.
    Hummer, G.; Pratt, L.R.; García, A.E., Free energy of ionic hydration, J. Phys. Chem. 1996,100,1206-1215CrossRefGoogle Scholar
  64. 64.
    Lebowitz, J. L.; Waisman, E. M., Statistical-mechanics of simple fluids: beyond van der Waals, Phys. Today 1980, 33, 24-30CrossRefGoogle Scholar
  65. 65.
    Jarzynski, C., Microscopic analysis of Clausius-Duhem processes, J. Stat. Phys. 1999, 96,415-427CrossRefGoogle Scholar
  66. 66.
    Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill: Singapore, 1991Google Scholar
  67. 67.
    Friedman, H. L.; Krishnan, C. V. Thermodynamics of ion hydration. in Water A Com-prehensive Treatise, Franks, F., Ed., vol. 3. Plenum: New York, 1973, pp. 1-118Google Scholar
  68. 68.
    Stell, G. Fluids with long-range forces. in Statistical Mechanics. Part A: Equilibrium Techniques, Berne, B. J., Ed. Plenum: New York, 1977, pp. 47-84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lawrence R. Pratt
    • 1
  • Dilip Asthagiri
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos Alamos
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations