Transition Path Sampling and the Calculation of Free Energies

  • Christoph Dellago
Part of the Springer Series in CHEMICAL PHYSICS book series (CHEMICAL, volume 86)


Path Sampling Acceptance Probability Transition Path Free Energy Difference Free Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. B., Statistical theories of chemical reactions: distributions in the transition region, J. Chem. Phys. 1973, 58, 4684-4692CrossRefGoogle Scholar
  2. 2.
    Bennett, C. H. Molecular dynamics and transition state theory: the simulation of infrequent events. In Algorithms for Chemical Computations (Washington, DC, 1977), Christoffersen, R. E., Ed., Am. Chem. Soc., pp. 63-97Google Scholar
  3. 3.
    Chandler, D., Statistical mechanics of isomerization dynamics in liquids and the transi-tion state approximation, J. Chem. Phys. 1978, 68, 2959-2970CrossRefGoogle Scholar
  4. 4.
    Moroni, D.; ten Wolde, P. R.; Bolhuis, P. G., Interplay between structure and size in a critical crystal nucleus, Phys. Rev. Lett. 2005, 94, 235703/1-4CrossRefGoogle Scholar
  5. 5.
    Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D., Transition path sampling and the calculation of rate constants, J. Chem. Phys. 1998, 108, 1964-1977CrossRefGoogle Scholar
  6. 6.
    Pratt, L., A statistical method for identifying transition states in high dimensional problems, J. Chem. Phys. 1986, 85, 5045-5048CrossRefGoogle Scholar
  7. 7.
    Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L., Transition path sampling: throwing ropes over mountain passes in the dark, Ann. Rev. Phys. Chem. 2002, 53, 291-318CrossRefGoogle Scholar
  8. 8.
    Dellago, C.; Bolhuis, P. G.; Geissler, P. L., Transition path sampling, Adv. Chem. Phys. 2002,123,1-78CrossRefGoogle Scholar
  9. 9.
    Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path sampling methods. In Computer Simulations in Condensed Matter: From Materials to Chemical Biology; Lecture Notes in Physics (2006), Ciccotti, G.; Binder, K., Eds., vol. 703, Springer: Berlin, Heidelberg, New York, pp. 337-378CrossRefGoogle Scholar
  10. 10.
    Moroni, D.; van Erp, T. S.; Bolhuis, P. G., Simultaneous computation of free energies and kinetics of rare events, Phys. Rev. E 2005, 71, 056709/1-5CrossRefGoogle Scholar
  11. 11.
    Radhakrishnan, R.; Schlick, T., Biomolecular free energy profiles by a shoot-ing/umbrella sampling protocol, “BOLAS”, J. Chem. Phys. 2004, 121, 2436-2444CrossRefGoogle Scholar
  12. 12.
    Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 1997,78,2690-2693CrossRefGoogle Scholar
  13. 13.
    Sun, S. X., Equilibrium free energies from path sampling of nonequilibrium trajectories, J. Chem. Phys. 2003, 118, 5769-5775CrossRefGoogle Scholar
  14. 14.
    Ytreberg, F. M.; Zuckerman, D. M., Single-ensemble nonequilibrium path-sampling estimates of free energy differences, J. Chem. Phys. 2004, 120, 10876-10879CrossRefGoogle Scholar
  15. 15.
    Ath ènes, M., A path-sampling scheme for computing thermodynamic properties of a many-body system in a generalized ensemble, Eur. Phys. J. B 2004, 38, 651-663CrossRefGoogle Scholar
  16. 16.
    Oberhofer, H.; Dellago, C.; Geissler, P. L., Biased sampling of non-equilibrium trajecto-ries: can fast switching simulations beat conventional free energy calculation methods? J. Phys. Chem. B 2005, 109, 6902-6915CrossRefGoogle Scholar
  17. 17.
    Dellago, C.; Bolhuis, P. G.; Chandler, D., On the calculation of rate constants in the transition path ensemble, J. Chem. Phys. 1999, 110, 6617-6625CrossRefGoogle Scholar
  18. 18.
    Dellago, C.; Geissler, P. L. Monte Carlo sampling in path space: calculating time corre-lation functions by transforming ensembles of trajectories. In The Monte Carlo Method in the Physical Sciences: Celebrating the 50th anniversary of the Metropolis algorithm (Melville, New York, 2003), Gubernatis, J. E., Ed., AIP Conference Proceedings 690, pp. 192-199Google Scholar
  19. 19.
    Geissler, P. L.; Dellago, C., Equilibrium time correlation functions from irreversible transformations in trajectory space, J. Phys. Chem. B 2004, 108, 6667-6672CrossRefGoogle Scholar
  20. 20.
    van Kampen, N. G., Stochastic Processes in Physics and Chemistry, Elsevier: Amsterdam, 1992Google Scholar
  21. 21.
    Zwanzig, R., Nonequilibrium Statistical Mechanics, Oxford University Press: Oxford, 2001Google Scholar
  22. 22.
    Allen, M. P.; Tildesley, D., Computer Simulation of Liquids, Clarendon: Oxford, 1987Google Scholar
  23. 23.
    Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, Academic: San Diego, 2002Google Scholar
  24. 24.
    Metropolis, N.; Metropolis, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations for fast computing machines, J. Chem. Phys. 1953, 21, 1087-1092CrossRefGoogle Scholar
  25. 25.
    Landau, D. P.; Binder, K., Monte Carlo Simulations in Statistical Physics, Cambridge University Press: Cambridge, 2000Google Scholar
  26. 26.
    de Gennes, P. G., Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys. 1971, 55, 572-579CrossRefGoogle Scholar
  27. 27.
    Crooks, G. E.; Chandler, D., Efficient transition path sampling for nonequilibrium sto-chastic dynamics, Phys. Rev. E 2001, 64, 026109/1-4CrossRefGoogle Scholar
  28. 28.
    Csajka, F. S.; Chandler, D., Transition pathways in a many-body system: application to hydrogen-bond breaking in water, J. Chem. Phys. 1998, 109, 1125-1133CrossRefGoogle Scholar
  29. 29.
    Dellago, C.; Bolhuis, P. G., Activation energies from transition path sampling simula-tions, Mol. Sim. 2004, 30, 795-799CrossRefGoogle Scholar
  30. 30.
    Duane, S.; Kennedy, A.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B 1987, 195, 216-222CrossRefGoogle Scholar
  31. 31.
    van Erp, T. S.; Moroni, D.; Bolhuis, P. G., A novel path sampling method for the calcu-lation of rate constants, J. Chem. Phys. 2003, 118, 7762-7774CrossRefGoogle Scholar
  32. 32.
    Moroni, D.; van Erp, T. S.; Bolhuis, P. G., Rate constants for diffusive processes by partial path sampling, J. Chem. Phys. 2004, 120, 4055-4065CrossRefGoogle Scholar
  33. 33.
    Chandler, D., Introduction to Modern Statistical Mechanics, Oxford University Press: Oxford, 1987Google Scholar
  34. 34.
    Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, Wiley: New York, 1985Google Scholar
  35. 35.
    Crooks, G. E., Nonequilibrium measurements of free energy differences for micro-scopically reversible Markovian systems, J. Stat. Phys. 1998, 90, 1481-1487CrossRefGoogle Scholar
  36. 36.
    Ritort, F., Work fluctuations and transient violations of the second law: Perspectives in theory and experiment, Sem. Poincare 2003, 2, 193-227Google Scholar
  37. 37.
    Hummer, G., Fast-growth thermodynamic integration: Error and efficiency analysis, J. Chem. Phys. 2001, 114, 7330-7337CrossRefGoogle Scholar
  38. 38.
    Wang, F.; Landau, D. P., Multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 2001, 86, 2050-2053CrossRefGoogle Scholar
  39. 39.
    Berg, B.; Neuhaus, T., Multicanonical algorithms for first order phase transitions, Phys. Lett. B 1991, 267, 249-253CrossRefGoogle Scholar
  40. 40.
    Geyer, C. J.; Thompson, E. A., Annealing Markov chain Monte Carlo with applications to ancestral inference, J. Am. Stat. Soc. 1995, 90, 909-933Google Scholar
  41. 41.
    Lechner, W.; Oberhofer, H.; Dellago, C.; Geissler, P. L., Equilibrium free energies from fast-switching simulations with larg time steps, J. Chem. Phys 2006, 124, 04113/1-12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Dellago
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaVienna

Personalised recommendations