Thermodynamic Integration Using Constrained and Unconstrained Dynamics

  • Eric Darve
Part of the Springer Series in CHEMICAL PHYSICS book series (CHEMICAL, volume 86)


Molecular Dynamic Reaction Coordinate Constraint Force Free Energy Difference Free Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirkwood, J.G., Statistical mechanics of fluid mixtures, J. Chem. Phys. 1935, 3, 300-313CrossRefGoogle Scholar
  2. 2.
    Torrie, G.M.; Valleau, J.P., Non-physical sampling distributions in Monte-Carlo free-energy estimation - umbrella sampling, J. Comput. Phys. 1977, 23, 187-199CrossRefGoogle Scholar
  3. 3.
    Kumar, S.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A.; Rosenberg, J.M., The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem. 1992, 13, 1011-1021CrossRefGoogle Scholar
  4. 4.
    Hagan, M.F.; Dinner, A.R.; Chandler, D.; Chakraborty, A.K., Atomistic understanding of kinetic pathways for single base-pair binding and unbinding in DNA, Proc. Natl Acad. Sci. USA 2003, 100, 13922-13927CrossRefGoogle Scholar
  5. 5.
    Tolpekina, T.V.; den Otter, W.K.; Briels, W.J., Influence of a captured solvent molecule on the isomerization rates of calixarenes, J. Phys. Chem. B 2003, 107, 14476-14485CrossRefGoogle Scholar
  6. 6.
    Virnau, P.; Muller, M., Calculation of free energy through successive umbrella sam-pling, J. Chem. Phys. 2004, 120, 10925-10930CrossRefGoogle Scholar
  7. 7.
    Chipot, C., Rational determination of charge distributions for free energy calculations, J. Comput. Chem. 2003, 24, 409-415CrossRefGoogle Scholar
  8. 8.
    Huang, D.M.; Geissler, P.L.; Chandler, D., Scaling of hydrophobic solvation free energies, J. Phys. Chem. B 2001, 105, 6704-6709CrossRefGoogle Scholar
  9. 9.
    Hendrix, D.A.; Jarzynski, C., A “fast growth” method of computing free energy differ-ences, J. Chem. Phys. 2001, 114, 5974-5981CrossRefGoogle Scholar
  10. 10.
    Hummer, G.; Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Natl Acad. Sci. USA 2001, 98, 3658-3661CrossRefGoogle Scholar
  11. 11.
    Hummer, G., Fast-growth thermodynamic integration: error and efficiency analysis, J. Chem. Phys. 2001, 114, 7330-7337CrossRefGoogle Scholar
  12. 12.
    Liphardt, J.; Dumont, S.; Smith, S.B.; Tinoco, I.; Bustamante, C., Equilibrium informa-tion from nonequilibrium measurements in an experimental test of Jarzynski’s equality, Science 2002, 296, 1832-1835CrossRefGoogle Scholar
  13. 13.
    Crooks, G.E., Thesis, U.C. Berkeley, Department of Chemistry, 1999Google Scholar
  14. 14.
    Crooks, G.E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 1999, 60, 2721-2726CrossRefGoogle Scholar
  15. 15.
    Crooks, G.E., Nonequilibrium measurements of free energy differences for micro-scopically reversible Markovian systems, J. Stat. Phys. 1998, 90, 1481-1487CrossRefGoogle Scholar
  16. 16.
    Crooks, G.E., Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E 2000, 61, 2361-2366CrossRefGoogle Scholar
  17. 17.
    den Otter, W.K., The calculation of free-energy differences by constrained molecular-dynamics simulations, J. Chem. Phys. 2000, 112, 7283-7292CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the efficiency of free energy calculation methods, J. Chem. Phys. 2004, 120, 3563-3578CrossRefGoogle Scholar
  19. 19.
    Ciccotti, G.; Ferrario, M., Blue moon approach to rare events, Mol. Simul. 2004, 30, 787-793CrossRefGoogle Scholar
  20. 20.
    Maragliano, L.; Ferrario, M.; Ciccotti, G., Effective binding force calculation in dimeric proteins, Mol. Simul. 2004, 30, 807-816CrossRefGoogle Scholar
  21. 21.
    Sergi, A.; Ciccotti, G.; Falconi, M.; Desideri, A.; Ferrario, M., Effective binding force calculation in a dimeric protein by molecular dynamics simulation, J. Chem. Phys. 2002,116,6329-6338CrossRefGoogle Scholar
  22. 22.
    Ciccotti, G.; Ferrario, M., Rare events by constrained molecular dynamics, J. Mol. Liq. 2000,89,1-18CrossRefGoogle Scholar
  23. 23.
    Sprik, M.; Ciccotti, G., Free energy from constrained molecular dynamics, J. Chem. Phys. 1998, 109, 7737-7744CrossRefGoogle Scholar
  24. 24.
    Depaepe, J.M.; Ryckaert, J.P.; Paci, E.; Ciccotti, G., Sampling of molecular confor-mations by molecular dynamics techniques, Mol. Phys. 1993, 79, 515-522CrossRefGoogle Scholar
  25. 25.
    den Otter, W.K., Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates, J. Chem. Phys. 2000, 112, 7283-7292CrossRefGoogle Scholar
  26. 26.
    den Otter, W.K.; Briels, W.J., Free energy from molecular dynamics with multiple constraints, Mol. Phys. 2000, 98, 773-781CrossRefGoogle Scholar
  27. 27.
    den Otter, W.K.; Briels, W.J., The calculation of free-energy differences by constrained molecular-dynamics simulations, J. Chem. Phys. 1998, 109, 4139-4146CrossRefGoogle Scholar
  28. 28.
    Darve, E.; Pohorille, A., Calculating free energies using average force, J. Chem. Phys. 2001,115,9169-9183CrossRefGoogle Scholar
  29. 29.
    Darve, E.; Wilson, M.A.; Pohorille, A., Calculating free energies using a scaled-force molecular dynamics algorithm, Mol. Simul. 2002, 28, 113-144CrossRefGoogle Scholar
  30. 30.
    Micheletti, C.; Laio, A.; Parrinello, M., Reconstructing the density of states by history-dependent metadynamics, Phys. Rev. Lett. 2004, 92, 170601-170604CrossRefGoogle Scholar
  31. 31.
    Stirling, A.; Iannuzzi, M.; Laio, A.; Parrinello, M., Azulene-to-naphthalene rearrange-ment: the Car-Parrinello metadynamics method explores various reaction mechanisms, Eur. J. Chem. Phys. Phys. Chem. 2004, 5, 1558-1568CrossRefGoogle Scholar
  32. 32.
    Iannuzzi, M.; Laio, A.; Parrinello, M., Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics, Phys. Rev. Lett. 2003, 90, 238302-238304CrossRefGoogle Scholar
  33. 33.
    Marto ň ák, R.; Laio, A.; Parrinello, M., Predicting crystal structures: the Parrinello-Rahman method revisited, Phys. Rev. Lett. 2003, 90, 075503-01CrossRefGoogle Scholar
  34. 34.
    Laio, A.; Parrinello, M., Escaping free-energy minima, Proc. Natl Acad. Sci. USA 2002, 99,12562-12566CrossRefGoogle Scholar
  35. 35.
    Lu, H.; Isralewitz, B.; Krammer, A.; Vogel, V.; Schulten, K., Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J. 1998, 75,662-671CrossRefGoogle Scholar
  36. 36.
    Isralewitz, B.; Gao, M.; Schulten, K., Steered molecular dynamics and mechanical functions of proteins, Curr. Opin. Struct. Biol. 2001, 11, 224-230 CrossRefGoogle Scholar
  37. 37.
    Lu, H.; Schulten, K., Steered molecular dynamics simulations of force-induced protein domain unfolding, Proteins: Struct. Funct. Gene. 1999, 35, 453-463CrossRefGoogle Scholar
  38. 38.
    Weinan, E.; Vanden-Eijnden, E., in Multiscale Modelling and Simulation, LNCSE 39, 2004(chapter: Metastability, conformation dynamics, and transition pathways in complex systems)Google Scholar
  39. 39.
    Ciccotti, G.; Kapral, R.; Vanden-Eijnden, E., Blue moon sampling, vectorial reac-tion coordinates, and unbiased constrained dynamics, Chem. Phys. Chem. 2005, 6, 1809-1814Google Scholar
  40. 40.
    Andersen, H.C., RATTLE: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations, J. Comput. Phys. 1983, 52, 24-34CrossRefGoogle Scholar
  41. 41.
    Schlitter, J.; Klahn, M., The free energy of a reaction coordinate at multiple constraints: a concise formulation, Mol. Phys. 2003, 101, 3439-3443CrossRefGoogle Scholar
  42. 42.
    Swegat, W.; Schlitter, J.; Kruger, P.; Wollmer, A., MD simulation of protein-ligand interaction: formation and dissociation of an insulin-phenol complex, Biophys. J. 2003, 84,1493-1506CrossRefGoogle Scholar
  43. 43.
    Schlitter, J.; Klahn, M., A new concise expression for the free energy of a reaction coordinate, J. Chem. Phys. 2003, 118, 2057-2060CrossRefGoogle Scholar
  44. 44.
    Schlitter, J.; Swegat, W.; Mulders, T., Distance-type reaction coordinates for modelling activated processes, J. Mol. Mod. 2001, 7, 171-177Google Scholar
  45. 45.
    Carter, E.A.; Ciccotti, G.; Hynes, J.T.; Kapral, R., Constrained reaction coordinate dynamics for the simulation of rare events, Chem. Phys. Lett. 1989, 156, 472-477CrossRefGoogle Scholar
  46. 46.
    Benjamin, I.; Pohorille, A., Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular dynamics study, J. Chem. Phys. 1993, 98, 236-242Google Scholar
  47. 47.
    Pohorille, A.; Wilson, M.A. Isomerization reactions at aqueous interfaces. in Reaction Dynamics in Clusters and Condensed Phases - The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Jortner, J.; Levine, R.; Pullman, B., Eds., vol. 26. Kluwer: Dordrecht, 1993, p. 207Google Scholar
  48. 48.
    Pohorille, A.; Chipot, C.; New, M.; Wilson, M.A., Molecular modeling of protocellular functions. in Pacific Symposium on Biocomputing ’96, Hunter, L.; Klein, T., Eds. World Scientific: Singapore, 1996, pp. 550-569Google Scholar
  49. 49.
    Pohorille, A.; Wilson, M.A.; Chipot, C., Interaction of alcohols and anesthetics with the water-hexane interface: a molecular dynamics study, Prog. Coll. Polym. Sci. 1997, 103, 29-40CrossRefGoogle Scholar
  50. 50.
    Chipot, C.; Wilson, M.A.; Pohorille, A., Interactions of anesthetics with the water-hexane interface. A molecular dynamics study, J. Phys. Chem. B 1997, 101, 782-791CrossRefGoogle Scholar
  51. 51.
    Pohorille, A.; New, M.H.; Schweighofer, K.; Wilson, M.A., Computer simulations of small molecules in membranes. in Membrane permeability: 100 years since Ernst Overton, Deamer, D., Ed., Current Topics in Membranes. Academic: San Diego, 1999, pp. 49-76CrossRefGoogle Scholar
  52. 52.
    H énin, J.; Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. 2004, 121, 2904-2914CrossRefGoogle Scholar
  53. 53.
    Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K., Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality, J. Chem. Phys. 2003,119,3559-3566CrossRefGoogle Scholar
  54. 54.
    H énin, J.; Pohorille, A.; Chipot, C., Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A, J. Am. Chem. Soc. 2005, 127, 8478-8484 CrossRefGoogle Scholar
  55. 55.
    Beutler, T.C.; Mark, A.E.; van Schaik, R.C.; Gerber, P.R.; van Gunsteren, W.F., Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations, Chem. Phys. Lett. 1994, 222, 529-539CrossRefGoogle Scholar
  56. 56.
    Kong, X.; Brooks III, C.L., λ-dynamics: a new approach to free energy calculations, J. Chem. Phys. 1996, 105, 2414-2423CrossRefGoogle Scholar
  57. 57.
    Guo, Z.Y.; Brooks III, C.L., Rapid screening of binding affinities: application of the lambda-dynamics method to a trypsin-inhibitor system, J. Am. Chem. Soc. 1998, 120, 1920-1921CrossRefGoogle Scholar
  58. 58.
    Guo, Z.; Brooks III, C.L.; Kong, X., Efficient and flexible algorithm for free energy calculations using the λ-dynamics approach, J. Phys. Chem. B 1998, 102, 2032-2036CrossRefGoogle Scholar
  59. 59.
    Bitetti-Putzer, R.; Yang, W.; Karplus, M., Generalized ensembles serve to improve the convergence of free energy simulations, Chem. Phys. Lett. 2003, 377, 633-641CrossRefGoogle Scholar
  60. 60.
    Ota, N.; Stroupe, C.; Ferreira da Silva, J.M.S.; Shah, S.A.; Mares-Guia, M.; Brunger, A.T., Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine, Proteins 1999,37,641-653CrossRefGoogle Scholar
  61. 61.
    Ota, N.; Brunger, A.T., Overcoming barriers in macromolecular simulations: non-Boltzmann thermodynamic integration, Theor. Chem. Acc. 1997, 98, 171-181Google Scholar
  62. 62.
    Boczko, E.M.; Brooks, C.L., Constant-temperature free-energy surfaces for physical and chemical processes, J. Phys. Chem. 1993, 97, 4509-4513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Eric Darve
    • 1
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanford

Personalised recommendations