Summary and Outlook

  • Andrew Pohorille
  • Christophe Chipot
Part of the Springer Series in CHEMICAL PHYSICS book series (CHEMICAL, volume 86)


Monte Carlo Free Energy Difference Free Energy Calculation Hydration Free Energy Thermodynamic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C. H., Efficient estimation of free energy differences from Monte Carlo data, J. Comput. Phys. 1976, 22, 245-268CrossRefGoogle Scholar
  2. 2.
    Lee, C. Y., Scott, H. L., The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm, J. Chem. Phys. 1980, 73, 4591-4596CrossRefGoogle Scholar
  3. 3.
    Oberhofer, H., Dellago, C., Geissler, P. L., Biased sampling of non-equilibrium trajecto-ries: can fast switching simulations beat conventional free energy calculation methods? J. Phys. Chem. B 2005, 109, 6902-6915CrossRefGoogle Scholar
  4. 4.
    Bitetti-Putzer, R., Yang, W., Karplus, M., Generalized ensembles serve to improve the convergence of free energy simulations, Chem. Phys. Lett. 2003, 377, 633-641CrossRefGoogle Scholar
  5. 5.
    Paulaitis, M. E., Pratt, L. R., Hydration theory for molecular biophysics, Adv. Prot. Chem. 2002, 62, 283-310CrossRefGoogle Scholar
  6. 6.
    Pratt, L. R., Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”, Annu. Rev. Phys. Chem. 2002, 53, 409-436CrossRefGoogle Scholar
  7. 7.
    Chandler, D., Interfaces and the driving force of hydrophobic assembly, Nature 2005, 437,640-647CrossRefGoogle Scholar
  8. 8.
    Petrenko, V. A., Smith, G. P., Phage display, Chem. Rev. 1997, 97, 381-410Google Scholar
  9. 9.
    Kolkman, J.A., Stemmer, W.P., Directed evolution of proteins by exon shuffling, Nat. Biotechnol. 2002, 19, 423-428CrossRefGoogle Scholar
  10. 10.
    Farinas, E.T., Bulter, T., Arnold, F.H., Directed enzyme evolution, Curr. Opin. Biotechnol. 2001, 12, 545-551CrossRefGoogle Scholar
  11. 11.
    Keefe, A. D., Szostak, J. W., Functional proteins from a random-sequence library, Nature 2001, 410, 715-718CrossRefGoogle Scholar
  12. 12.
    Shoichet, B., Bodian, D., Kuntz, I., Molecular docking using shape descriptors, J. Comput. Chem. 1992, 13, 380-397CrossRefGoogle Scholar
  13. 13.
    Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol. 1997, 267, 727-748CrossRefGoogle Scholar
  14. 14.
    Claussen, H., Buning, C., Rarey, M., Lengauer, T., FLEXE: efficient molecular docking considering protein structure variations, J. Mol. Biol. 2001, 308, 377-395CrossRefGoogle Scholar
  15. 15.
    Bowie, J.U., Luthy, R., Eisenberg, D., A method to identify protein sequences that fold into a known three-dimensional structure, Science 1991, 253, 164-170CrossRefGoogle Scholar
  16. 16.
    Dunbrack, R. L., Sequence comparison and protein structure prediction, Curr. Opin. Struct. Biol. 2006, 16, 374-384CrossRefGoogle Scholar
  17. 17.
    Street, A. G., Mayo, S. L., Computational protein design, Structure 1999, 7, R105-R109CrossRefGoogle Scholar
  18. 18.
    Bonneau, R., Baker, D., Ab initio protein structure prediction: progress and prospects, Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 173-189CrossRefGoogle Scholar
  19. 19.
    Saven, J. G., Combinatorial protein design, Curr. Opin. Struct. Biol. 2002, 12, 453-458CrossRefGoogle Scholar
  20. 20.
    Amadei, A., Linssen, A. B. M., Berendsen, H. J. C., Essential dynamics of proteins, Proteins: Struct. Funct. Genet. 1993, 17, 412-425CrossRefGoogle Scholar
  21. 21.
    Amadei, A., Apol, M. E. F., Berendsen, H. J. C., The quasi-Gaussian entropy theory: free energy calculations based on the potential energy distribution function, J. Chem. Phys. 1996, 104, 1560-1574CrossRefGoogle Scholar
  22. 22.
    Daidone, I., Amadei, A., Roccatano, D., Nola, A. D., Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c, Biophys. J. 2003, 85, 2865-2871CrossRefGoogle Scholar
  23. 23.
    Chen, C., Xiao, Y., Zhang, L., A directed essential dynamics simulation of peptide folding, Biophys. J. 2005, 88, 3276-3285CrossRefGoogle Scholar
  24. 24.
    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 1983, 4, 187-217CrossRefGoogle Scholar
  25. 25.
    Go, N., Noguti, T., Nisikawa, T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA 1983, 80, 3696-3700CrossRefGoogle Scholar
  26. 26.
    Levitt, M., Sander, C., Stern, P. S., Normal-mode dynamics of a protein: bovine pancre-atic trypsin inhibitor, Int. J. Quant. Chem: Quant. Biol. Symp. 1983, 10, 181-199Google Scholar
  27. 27.
    Bahar, I., Atilgan, A. R., Erman, B., Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des. 1997, 2, 173-181CrossRefGoogle Scholar
  28. 28.
    Hinsen, K., Analysis of domain motions by approximate normal mode calculations, Proteins: Struct. Funct. Genet. 1998, 33, 417-429CrossRefGoogle Scholar
  29. 29.
    Schuyler, A. D., Chirikjian, G. S., Efficient determination of low-frequency normal modes of large protein structures by cluster-NMA, J. Mol. Graph. Model. 2005, 24, 46-58CrossRefGoogle Scholar
  30. 30.
    Tembe, B. L., McCammon, J. A., Ligand-receptor interactions, Comput. Chem. 1984, 8,281-283CrossRefGoogle Scholar
  31. 31.
    Miyamoto, S., Kollman, P. A., What determines the strength of noncovalent association of ligands to proteins in aqueous solution? Proc. Natl Acad. Sci. USA 1993, 90, 8402-8406CrossRefGoogle Scholar
  32. 32.
    H énin, J., Maigret, B., Tarek, M., Escrieut, C., Fourmy, D., Chipot, C., Probing a model of a GPCR/ligand complex in an explicit membrane environment. The human cholecystokinin-1 receptor, Biophys. J. 2006, 90, 1232-1240CrossRefGoogle Scholar
  33. 33.
    Wank, S. A., G protein-coupled receptors in gastrointestinal physiology. I. CCK recep-tors: an exemplary family, Am. J. Physiol. 1998, 274, G607-G613Google Scholar
  34. 34.
    Sanbonmatsu, K. Y., Simpson, J., Tung, C. S., Simulating movement of tRNA into the ribosome during decoding, Proc. Natl Acad. Sci. USA 2005, 102, 15854-15859CrossRefGoogle Scholar
  35. 35.
    Cieplak, P., Caldwell, J. W., Kollman, P. A., Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approxima-tion: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases, J. Comput. Chem. 2001, 22, 1048-1057CrossRefGoogle Scholar
  36. 36.
    Ren, P., Ponder, J. W., Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations, J. Comput. Chem. 2002, 23, 1497-1506CrossRefGoogle Scholar
  37. 37.
    Kaminski, G. A., Stern, H. A., Berne, B. J., Friesner, R. A., Cao, Y. X., Murphy, R. B., Zhou, R., Halgren, T. A., Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests, J. Comput. Chem. 2002,23,1515-1531CrossRefGoogle Scholar
  38. 38.
    Patel, S., Mackerell, A. D., Brooks, C. L., CHARMM fluctuating charge force field for proteins. II. Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model, J. Comput. Chem. 2004, 25, 1504-1514CrossRefGoogle Scholar
  39. 39.
    Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., Mackerell, A. D., A polarizable model of water for molecular dynamics simulations of biomolecules, Chem. Phys. Lett. 2006,418,245-249CrossRefGoogle Scholar
  40. 40.
    Gao, J., Truhlar, D. G., Quantum mechanical methods for enzyme kinetics, Annu. Rev. Phys. Chem. 2002, 53, 467-505CrossRefGoogle Scholar
  41. 41.
    Friesner, R. A., Guallar, V., Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis, Annu. Rev. Phys. Chem. 2005, 56, 389-427CrossRefGoogle Scholar
  42. 42.
    Car, R., Parrinello, M., Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 1985, 55, 2471-2474CrossRefGoogle Scholar
  43. 43.
    Galli, G., Parrinello, M., Ab initio molecular dynamics: principles and practical imple-mentation. In: Computer Simulation in Material Science, Meyer, M., Pontikis, V., Eds. Kluwer: Dordecht, 1991, p. 283Google Scholar
  44. 44.
    Marx, D., Hutter, J., Ab initio molecular dynamics: theory and implementation. In: Modern Methods and Algorithms of Quantum Chemistry, Grotendorst, J., Ed. John von Neumann Institute for Computing: J ülich, NIC Series, 2000, pp. 301-449Google Scholar
  45. 45.
    Jensen, M. O., Rothlisberger, U., Rovira, C., Hydroxide and proton migration in aqua-porins, Biophys. J. 2005, 89, 1744-1759CrossRefGoogle Scholar
  46. 46.
    Hwang, J.-K., Warshel, A., How important are quantum mechanical nuclear motions in enzyme catalysis?, J. Am. Chem. Soc 1996, 118, 11745-11751CrossRefGoogle Scholar
  47. 47.
    Burykin, A., Warshel, A., What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals, Biophys. J. 2003, 85, 3696-3706CrossRefGoogle Scholar
  48. 48.
    Wu, Y., Voth, G. A., A computer simulation study of the hydrated proton in a synthetic proton channel, Biophys. J. 2003, 85, 864-875CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrew Pohorille
    • 1
  • Christophe Chipot
    • 2
  1. 1.Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Equipe de Dynamique des Assemblages Membranaires UMR CNRS/UHP 7565Universite Henri PoincareFrance

Personalised recommendations