Skip to main content

Towards Ecological Relevance — Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

The major achievement of the first hundred years of research on the mycorrhizal symbiosis is the observation that the symbiosis is almost universally present in natural communities of terrestrial plants. However, studies of the functional characteristics of the mycorrhizal associations have used, for the most part, reductionist approaches, and the role of the symbiosis in the dynamics of terrestrial plant communities has been largely overlooked. This chapter, along with others contained in the book, describes attempts made so far to place the mycorrhizal function in the broader context. The strengths and weaknesses of reductionist approaches to investigation of mycorrhizal function are assessed and the overriding need to recognise and tackle the inherent complexity of plant and microbial communities is seen as a fundamental prerequisite for progress towards ecological relevance. Two distinct pathways are seen to have the potential to facilitate this progress, one involving microcosm’, the other ‘field’ approaches. The relative advantages and disadvantages of each approach is examined and the features of experimental design which will enhance the potential to obtain ecologically meaningful outputs are considered in detail. It is concluded that, in addition to the requirement for greater sophistication in our experimental approaches, there is a need for more effective collaboration with specialists in related disciplines, most notably soil chemists, bacteriologists, micro-faunists and those dealing with other fungal groups, if we are to gain an appreciation of the status of the mycorrhizal symbiosis in the larger context of ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander C, Hadley G (1984) The effect of mycorrhizal infection of Goodyera repens and its control by fungicide. New Phytol 97: 391–400

    Article  CAS  Google Scholar 

  • Allen EB, Allen MF (1986) Water relations of xeric grasses in the field: interactions of mycorrhizae and competition. New Phytol 104: 559–571

    Article  Google Scholar 

  • Allen MF (1987) Re-establishment of mycorrhizas on Mount St Helens: migration vectors. Trans Br Mycol Soc 88: 413–417

    Article  Google Scholar 

  • Allen MF (1988) Re-establishment VA of mycorrhizae following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc R Soc Edinb 94B: 63–71

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge Univ Press, Cambridge Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicu-lar-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia (Berl) 64: 111–117

    Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. V. The foraging behaviour of ecto-mycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 401–409

    Google Scholar 

  • Beyer RJ, Odum HT (1993) Ecological microcosms. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10: 9–31

    Article  CAS  Google Scholar 

  • Birch CPD (1986) Development of VA mycorrhizal infection in seedlings in semi-natural grassland turf. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of Mycorrhizae. INRA, Paris, France, pp 233–237

    Google Scholar 

  • Bowen HIM, Cawse PA (1964) Effects of ionizing radiation on soils and subsequent crop growth. Soil Sci 97: 252–259

    Article  CAS  Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetations Kunde. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Buckland SM, Grime JP (2000) The effects of trophic structure and soil fertility on the assembly of plant communities: a microcosm experiment. Oikos 91: 336–352

    Article  Google Scholar 

  • Carey PD, Fitter AH, Watkinson AR (1992) A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90: 550–555

    Article  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ecto-mycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32: 489–496

    Article  CAS  Google Scholar 

  • Debaud JC, Marmeisse R, Gay F (1995) Intra specific genetic variation in ecto-mycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 79–113

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Ek H, Sjögren M, Arnebrant K, Söderström B (1994) Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ecto-mycorrhizal systems in response to collembolan grazing. Appl Soil Ecol 1: 155–169

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. II. The uptake and distribution of phosphorus by mycelium interconnecting host plants. New Phytol 103: 157–165

    Google Scholar 

  • Fitter AH (1986) Effect of benomyl on leaf phosphorus concentration in alpine grassland: a test of mycorrhizal benefit. New Phytol 103: 767–776

    Article  CAS  Google Scholar 

  • Fitter AH, Nichols R (1988) The use of benomyl to control fungal infection by vesiculararbuscular mycorrhizal fungi. New Phytol 110: 201–206

    Article  CAS  Google Scholar 

  • Fitter AH, Sanders IR (1992) Interactions with the soil fauna. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 333–354

    Google Scholar 

  • Francis R, Read DJ (1994) The contribution of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11–25

    Google Scholar 

  • Francis R. Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73 [Suppl]: 1301–1309

    Google Scholar 

  • Frank A (1894) Die Bedeutung der Mykorrhiza-pilze für die gemeine Kiefer. Forst Centralbl 16: 185–190

    Google Scholar 

  • Fraser LH, Grime JP (1998) Top-down control and its effects upon the biomass and composition of three grasses at high and low soil fertility in outdoor microcosms. Oecologia 113: 239–246

    Article  Google Scholar 

  • Fraser LH, Grime JP (1999) Interacting effects of herbivory and fertility on a synthesized plant community. J Ecol 87: 514–525

    Article  Google Scholar 

  • Fretwell SD (1977) The regulation of plant communities by the food chains exploiting them. Perspect Biol Med 20: 169–185

    Google Scholar 

  • Fretwell SD (1987) Food chain dynamics: the central theory of ecology? Oikos 50: 291–301

    Article  Google Scholar 

  • Gange AC (2000) Disruption of arbuscular mycorrhizal mutualism by Collembola–fact or fantasy? Trends Ecol Evol 15: 369–372

    Article  PubMed  Google Scholar 

  • Gange AC, Brown VK (1992) Interactions between soil-dwelling insects and mycorrhizas during early plant succession. In: Read DJ, Lewis DH, Fitter AH, Alexander II (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 177–182

    Google Scholar 

  • Gange AC, Bower E (1996) Interactions between insects and mycorrhizal fungi. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, London, pp 115–132

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Article  Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Bio Rev 52: 107–145

    Article  Google Scholar 

  • Harley JL (1959) The Biology of Mycorrhiza. Leonard Hill, London

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British Flora. New Phytol 105: 1–102

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal Symbiosis. Academic Press, London

    Google Scholar 

  • Harris KK, Boerner REJ (1990) Effects of belowground grazing by collembola on growth

    Google Scholar 

  • mycorrhizal infection, and P uptake of Geranium robertianum. Plant Soil 129:203–210 Hartnett C, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology 80:1187–1195

    Google Scholar 

  • Heinonsalo J, Jorgensen KS, Haahtela K, Sen R (2000) Effects of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils. Can J Microbiol 46: 451–464

    PubMed  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPY (1998) Ploughing up the wood-wide web? Nature 392: 431

    Article  Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GWT (1986) The influence of phosphorus fertilisation, drought, fungus species and non-sterile soil on mycorrhizal growth responses in tall grass prairie plants. Can J Bot 64: 1199–1203

    Article  Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GWT (1988) Mycorrhizal dependence and growth habit of warm-season and cool-season tall-grass prairie species. Can J Bot 66: 1376–1380

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tall grass prairie grasses. Can Jo Bot 67: 2608–2615

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1990) Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Can J Bot 68: 461–467

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460

    Article  Google Scholar 

  • Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland 11 (1991) Vesiculararbuscular mycorrhizae respond to corn and soybean cropping history. New Phytol 117: 657–663

    Article  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034–2042

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140: 295–310

    Article  Google Scholar 

  • Greenberger J, Alan H, Grinstein A (1976) Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens. Phytopathology 66: 683–688

    Article  Google Scholar 

  • Kerley SI, Read DJ (1988) The biology of mycorrhiza in the Ericaceae XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenscyphus ericae and its host. New Phytol 109: 473–481

    Article  Google Scholar 

  • Kitt DG, Hetrick BAD, Wilson GWT (1988) Relationship of soil fertility to suppression of the growth response of mycorrhizal big bluestem in nonsterile soil. New Phytol 109: 473–481

    Article  Google Scholar 

  • Klironomos J (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Society for Microbial Ecology, Halifax, Canada, pp 845–851

    Google Scholar 

  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117: 365–386

    Article  CAS  Google Scholar 

  • Koide RT, Li M (1989) Appropriate controls for vesicular-arbuscular mycorrhizal research. New Phytol 111: 35–44

    Article  Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schultze ED, Moony HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp 117–140

    Google Scholar 

  • Körner C, Arnone J III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675

    Article  PubMed  Google Scholar 

  • Koske RE (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79: 55–68

    Article  Google Scholar 

  • Kovacic DA, St John TV, Dyer MI (1984) Lack of vesicular-arbuscular mycorrhizal inoculum in a ponderosa pine forest. Ecology 65: 1755–1759

    Article  Google Scholar 

  • Laakso J Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87: 57–64

    Article  Google Scholar 

  • Lapeyrie F (1990) The role of ecto-mycorrhizal fungi in calcareous soil tolerance by symbiocalcicole woody-plants. Ann Sci For 47: 579–589

    Article  Google Scholar 

  • Lawton J (1995) Ecological experiments with model systems. Science 269:328–331 Lussenhop J (1996) Collembola as mediators of microbial symbiont effects upon soybean. Soil Biol Biochem 28: 363–369

    Google Scholar 

  • Marx DH, Ruehle JL, Cordell CE (1991) Methods for studying nursery and field response of trees to specific ecto-mycorrhiza. Methods Microbiol 23: 383–411

    Article  Google Scholar 

  • McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edinb B94: 25–32

    Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant

    Google Scholar 

  • treated with the fungicide benomyl in the field. New Phytol 132:307–311

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Adv Ecol Res 30: 69–112

    Article  CAS  Google Scholar 

  • Murdoch CL, Jackobs JA, Gerdemann JW (1967) Utilisation of phosphorus sources of different availability by mycorrhizal and non-ycorrhizal maize. Plant Soil 27: 329–334

    Article  Google Scholar 

  • Newman EI, Reddell P (1988) Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains. Funct Ecol 2: 259–262

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82: 805–814

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Merryweather JW (1995a) Multifunctionality and biodiversity in arbuscular mycorrhizas. Tree 10: 407–411

    PubMed  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995b) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83: 991–1000

    Article  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology. Saunders, Philadelphia, USA

    Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Monogr Popul Biol 23. Princeton Univ Press, Princeton

    Google Scholar 

  • Paul ND, Aryes PG, Wyness LE (1989) On the use of fungicides for experimentation in natural vegetation. Funct Ecol 3: 759–769

    Article  Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ecto-mycorrhizal plants. New Phytol 145: 301–309

    Article  CAS  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ecto-mycorrhizal medi-ation of competition between coniferous tree species. New Phytol 112: 501–511

    Article  Google Scholar 

  • Peyronel B (1924) Prime recherche sulle micorize endotrofiche e sulla microflora radi-cola normale delle fanergame. Riv Biol 5: 463–485

    Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesiculararbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24: 659–662

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ (1992) Experimental simplicity versus natural complexity in mycorrhizal systems. In: Fontana A (eds) Fungi, plants and soil. National Council for Research, Turin, Italy, pp 75–104

    Google Scholar 

  • Read DJ (1997) The ties that bind. Nature 388: 517–518

    Article  CAS  Google Scholar 

  • Read DJ (1998) Mycorrhiza - the state of the art. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Read DJ (1999) The ecophysiology of mycorrhizal symbioses with special reference to impacts upon plant fitness. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Oxford

    Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 193–217

    Google Scholar 

  • Rodwell JS (1991) British plant communities, vol 1–5. Cambridge Univ Press, Cambridge Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ecto-mycorrhizal fungi. Ecology 76: 1844–1851

    Google Scholar 

  • Setälä H, Kulmala P, Mikola J, Markkola AM (1999) Influence of ecto-mycorrhiza on the structure of detrital food webs in pine rhizosphere. Oikos 87: 113–122

    Article  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58: 291–295

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85: 181–191

    Article  Google Scholar 

  • Stribley DP, Read DJ, Hunt R (1975) The biology of mycorrhiza in the Ericaceae. V. The effect of mycorrhizal infection, soil type and partial soil sterilisation (by y irradiation) on growth of Cranberry (Vaccinium macrocarpon Ait). New Phytol 75: 119–130

    Article  CAS  Google Scholar 

  • Stroetmann I, Kampfer P, Dott W (1994) Efficiency of different methods for sterilization of different soil types. Zentralbl Hyg Umweltmed 195: 111–120

    PubMed  CAS  Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris Suillus bovinus and Pinus sylvestris Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44: 499–513

    CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA Mycorrhizal plants. CRC Press, Boca Raton, pp 5–25

    Google Scholar 

  • Trappe JM (1988) Lessons from alpine fungi. Mycologia 80: 1–10

    Article  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1988a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1999) “Sampling effect”, a problem in biodiversity manipulation? A reply to David A Wardle. Oikos 87:408–410

    Google Scholar 

  • Visser S (1995) Ecto-mycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129: 389–401

    Article  Google Scholar 

  • Wardle DA (1999) Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relations? Oikos 87: 403–407

    Article  Google Scholar 

  • Warnock AJ, Fitter AH, Asher MB (1982) The influence of a springtail, Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek, Allium porrum and the vesicular-arbuscular endophyte, Glomus fasciculatus. New Phytol 90: 283–292

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phytogenetics. In: Innis MA, Gelfand DM, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–233

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, D.J. (2003). Towards Ecological Relevance — Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics