Skip to main content

Control of Genome Integrity in Terminally Differentiating and Postmitotic Aging Cells

  • Chapter
Differentiation and Neoplasia

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 11))

Abstract

During early morphogenesis, organ- or tissue-specific “stem” cell lines are established. Initially multipotent, the progeny become committed to the expression of an increasingly restricted number of specialized phenotypes. The process leading to acquisition by cells of specialized structures and/or functions is called cell differentiation. Implicit in such a process is the progressive loss of the potential for tissue metaplasia, i.e., the ability to be reprogramed and converted into another phenotype. A rare exception to this rule in vertebrates is the Wolffian lens regeneration in lentectomized newts where fully differentiated melanocytes from the dorsal iris dedifferentiate, proliferate and then redifferentiate into lens fiber cells (Yamada 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appleby D.W., Modak S.P.: DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc. Natl. Acad. Sci. USA 74, 5579–5583 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Axel R.: Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease. Biochemistry 14, 2921–2925 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Axel R., Cedar H., Felsenfeld G.: Synthesis of globin ribonucleic acid from duck-reticulocyte chromatin in vitro. Proc. Natl. Acad. Sci. USA 70, 2029–2032 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Barton R.W., Yang W.K.: Low molecular weight DNA polymerase decreased activity in spleens of old Balb/c mice. Mech. Ageing Dev. 4, 123–136 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Bodell W.J.: Non-uniform distribution of DNA repair in chromatin after treatment with methyl methanesulfonate. Nucleic Acids Res. 4, 2619–2628 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Bradbury E.M.: Histone interactions and chromatin structure. In: The organization and expression of eukaryotic genome (eds. E.M. Bradbury, K. Javaherian), pp. 99–123. New York-London: Academic Press 1977.

    Google Scholar 

  • Brash D.E., Hart R.W.: DNA damage and repair in vivo. J. Environmental Pathol. Toxicol. 2, 79–114 (1978).

    CAS  Google Scholar 

  • Chan A.C., Ng S.K.C., Walker I.G.: Reduced DNA repair during differentiation of a myogenic cell line. J. Cell Biol. 70, 685–691 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Clark R.J., Felsenfeld G.: Structure of chromatin. Nature New Biol. 229, 101–106 (1971).

    PubMed  CAS  Google Scholar 

  • Clark R.J., Felsenfeld G.: Association of arginine-rich histones with GC-rich regions of DNA. Nature New Biol. 240, 226–229 (1972).

    PubMed  CAS  Google Scholar 

  • Cleaver J.E.: Nucleosome structure controls rates of excision repair in DNA of human cells. Nature (London) 270, 451–453 (1977).

    Article  CAS  Google Scholar 

  • Compton J.L., Hancock R., Oudet P., Chambon P.: Biochemical and electron microscopic evidence that the subunit structure of chinese-hamster-ovary interphase chromatin is conserved in mitotic chromosomes. Eur. J. Biochem. 70, 555–568 (1975).

    Article  Google Scholar 

  • Counis M.-F., Chadun E., Courtois Y.: DNA snythesis and repair in terminally differentiating embryonic lens cells. Dev. Biol. 57, 47–55 (1977).

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio S.M., Setlow R.B.: On the presence of UV-endonuclease sensitive site in mammalian DNA. In: DNA repair mechanisms (eds. P.C. Hanawelt, E. Freidberg, C.F. Fox), Vol. IX, pp. 499–503. New York: Academic Press 1978.

    Google Scholar 

  • Garel A., Axel R.: Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc. Natl. Acad. Sci. USA 73, 3966–3970 (1973).

    Article  Google Scholar 

  • Garrard W.D., Bonner J.: Changes in chromatin proteins during liver regeneration. J. Biol. Chem. 249, 3729–3736 (1974).

    Google Scholar 

  • Gilmour R.S., Paul J.: Tissue-specific transcription of the globin gene in isolated chromatin. Proc. Natl. Acad. Sci. USA 70, 3440–3442 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S.: The biology of aging. New Engl. J. Med. 285, 1120–1129 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Goth R., Rajewsky M.F.: Persistence of 06-ethylguanine in rat brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc. Natl. Acad. Sci. USA 71, 639–643 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Hahn F.M., King D., Yang S.J.: Quantitative changes in unscheduled DNA synthesis in rat muscle cells after differentiation. Nature New Biol. 230, 242–244 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Hart R.W., Setlow R.B.: Correlation between deoxyribonucleic acid excision repair and life-span in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71, 2169–2173 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Hart R.W., Setlow R.B.: DNA repair in late-passage human cells. Mech. Ageing Dev. 5, 67–7 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Hart R.W., D’Ambrosio S.M., Ng K.K., Modak S.P.: Longevity, stability and DNA repair. Mech. Ageing Dev. 9, 203–223 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Hewish D.R., Burgoyne L.A.: Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52, 504–510 (1973).

    CAS  Google Scholar 

  • Kakunaga R.: The role of cell division in the malignant transformation of mouse cells treated with 3-methylcholanthrene. Cancer Res. 35, 1637–1642 (1975).

    PubMed  CAS  Google Scholar 

  • Kakunaga T.: Requirement for cell replication in the fixation and expression of the transformed state in mouse cells treated with 4-nitroquinolin-1-oxide. Int. J. Cancer 14, 736–742 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Karran P., Ormerod M.G.: Is the ability to repair damage to DNA related to the proliferative capacity of a cell? The rejoining of X-ray produced strand breaks. Biochim. Biophys. Acta 299, 54–64 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Karran P., Moscona A., Strauss B.: Developmental decline in DNA repair in neural retina cells of chick embryos. J. Cell Biol. 74, 274–286 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Koostra A., Slaga T.J., Olins D.E.: Binding of Benzo(A) pyrene diol epoxide to chromatin. Biophys. J. 21, 67a (1978).

    Google Scholar 

  • Kornberg R.D.: Chromatin structure: A repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kornberg R.D., Thomas J.O.: Chromatin structure oligomers of the histones. Science 184, 865–868 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Linn S., Kairis M., Holliday R.: Decreased fidelity of DNA polymerase activity isolated from aging human fibroblasts. Proc. Natl. Acad. Sci. USA 73, 2818–2822 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Little J.B.: Relationship between DNA repair capacity and cellular aging. Gerontology 22, 28–55 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Lohr D., Corden J., Tatchell K., Kovacic R.T., van Holde K.E.: Comparative subunit structure of HeLa, yeast and chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 74, 79–83 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Maher V.M., McCormick J.J.: Effect of DNA repair on the cytotoxicity and mutagenesis of UV radiation and chemical carcinogens in normal and Xeroderma pigmentosum cells. In: Biology of Radiation Carcinogenesis (eds. J.M. Yuhas, R.W. Tennant, J. Regan), pp. 129–145. New York: Raven Press 1976.

    Google Scholar 

  • Maher V.M., Quellette L.M., Curren R.D., McCormick J.J.: Frequency of UV-light-induced mutation is higher in Xeroderma Pigmentosum variant cells than in normal cells. Nature (London) 261, 593–595 (1976).

    Article  CAS  Google Scholar 

  • Massie H.R., Baird M.B., Nicolosi R.J.: Changes in the structure of rat liver DNA in relation to age. Arch. Biochem. Biophys. 153, 736–741 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Mattern M.R., Cerutti P.A.: Selective excision of gammay ray damaged thymine from the DNA of cultured mammalian cells. Biochim. Biophys. Acta 395, 48–55 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Milo G.E., Hart R.W.: Age-related alterations in plasma membrane glycoprotein content and scheduled or unscheduled DNA synthesis. Arch. Biochem. Biophys. 176, 324–333 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Modak S.P.: A model for transcriptional control in terminally differentiating lens fiber cells. In: Cell Differentiation (eds. R. Harris, P. Allin, D. Viza), pp. 339–342. Copenhagen: Munksgaard 1972.

    Google Scholar 

  • Modak S.P.: Two-dimensional electrophoresis of native and denatured DNA from chromatin digests. Experienta 34, 57 (1978).

    Article  Google Scholar 

  • Modak S.P., Bollum F.J.: Terminal lens cell differentiation. III. Initiator activity of DNA during nuclear degeneration. Exp. Cell Res. 62, 421–432 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Modak S.P., Bollum F.J.: Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75, 307–313 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Modak S.P., Perdue S.W.: Terminal lens cell differentiation. I. Histological and microspectrophotometric analyses of nuclear degeneration. Exp. Cell Res. 59, 43–56 (1970).

    CAS  Google Scholar 

  • Modak S.P., Price G.B.: Exogenous DNA polymerase-catalyzed incorporation of deoxyribonucleotide monophosphates in nuclei of fixed mouse brain cells: Changes associated with age and X-irradiation. Exp. Cell Res. 65, 289–298 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Modak S.P., Traurig H.: Appearance of strand breaks in the nuclear DNA of terminally differentiating vaginal epithelium. Cell Differ. 2, 351–355 (1972).

    Article  Google Scholar 

  • Modak S.P., von Borstel R.C., Bollum F.J.: Terminal lens cells differentiation. II. Template activity of DNA during nuclear degeneration. Exp. Cell Res. 56, 105–113 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Modak S.P., Appleby D.W., Chappuis M.: Cytoplasmic informational DNA: Fact or Fantasy? J. Cell Biol. 70, 140a (1976).

    Google Scholar 

  • Modak S.P., Gonet C., Unger-Ullmann C., Chappuis M.: Chromatin structure in aging mouse liver. Experienta 34, 57 (1978).

    Article  Google Scholar 

  • Morris N.R.: A comparison of the structure of chick erythrocyte and chick liver chromatin. Cell 9, 627–632 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Noll M.: Subunit structure of chromatin. Nature (London) 251, 249–251 (1974).

    Article  CAS  Google Scholar 

  • Olins A.L., Olins D.E.: Spheroid chromatin units (v Bodies). Science 183, 330–332 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Peleg L., Raz E., Ben-Ishai R.: Changing capacity for DNA excision-repair in mouse embryonic cells in vitro. Exp. Cell Res. 104, 301–307 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Piatigorsky J., Rothschild S.S., Milstone L.M.: Differentiation of lens fibers in explanted embryonic chick lens epithelia. Dev. Biol. 34, 334–345 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Price G.B., Modak S.P., Makinodan T.: Age-associated changes in the DNA of mouse tissue. Science 171, 917–920 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Radman M.: SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Molecular Mechanisms for Repair of DNA (eds. P.C. Hanawalt, R.B. Setlow), pp. 355–368. New York: Plenum Press 1975.

    Chapter  Google Scholar 

  • Ruiz-Carrillo A., Wangh L.J., Allfrey V.G.: Processing of newly snythesized histone molecules. Science 190, 117–128 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Sacher G.A., Hart R.W.: Longevity, aging and comparative cellular and molecular biology of the house mouse Mus musculus and the white footed mouse, Peromyscus leucopus. In: Birth Defects—Original Article Ser. 14, 71–98 (1978).

    CAS  Google Scholar 

  • Shaw B.R., Herman T.M., Kovacic R.T., Beaudreau G.S., van Holde K.E.: Analysis of subunit organization in chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 73, 505–509 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Skalka M., Matyasova J., Cejkova M.: DNA in chromatin of irradiated lymphoid tissues degraded in vivo into regular fragments. FEBS Lett. 72, 271–274 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Sollner-Webb B., Felsenfeld G.: A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry 14, 2915–2920 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Smith-Sonneborn J.: DNA repair and longevity assurance in Paramecium tetraurelia. Science 203, 1115–1117 (1978).

    Article  Google Scholar 

  • Stockdale F.E.: Changing levels of DNA polymerase activity during the development of skeletal muscle tissue in vivo. Dev. Biol. 21, 462–474 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Stockdale F.E.: DNA synthesis in differentiating skeletal muscle cells: initiation by ultraviolet light. Science 171, 1145–1147 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stockdale F.E., O’Neill M.C.: Repair DNA synthesis in differentiated embryonic muscle cells. J. Cell Biol. 52, 589–597 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.O.: Aspects of the structure of chromatin. In: The Organization and expression of eukaryotic genome (eds. E.M. Bradbury, K. Javaherian), pp. 83–98. New York-London: Academic Press 1977.

    Google Scholar 

  • Todd R.D., Garrard W.T.: Two-dimensional electrophoretic analysis of polynucleosomes. J. Biol. Chem. 252, 4729–4738 (1977).

    PubMed  CAS  Google Scholar 

  • Tréton, J., Modak, S.P., Courtois, Y.: Analysis of thimidine incorporation in the DNA of chick embryo lens epithelium and lens fibers irradiated with ultraviolet light. Exp. Eye Res., in press (1980).

    Google Scholar 

  • Unger-Ullmann C., Modak S.P.: Gel electrophoretic analysis of histones in late chick embryo lens epithelium, lens fiber, liver, brain and erythrocyte. Differentiation 12, 135–144 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Varshavsky A.J., Bakayev V.V., Gerogiev G.P.: Heterogeneity of chromatin subunits in vitro and location of histone H1. Nucleic Acids Res. 3, 477–492 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H.: The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acid Res. 5, 1179–1188 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H., Groudine M.: Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H., Worcel A., Alberts B.: A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409–417 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Wheeler K.T., Lett J.T.: On the possibility that DNA repair is related to age in nondividing cells. Proc. Natl. Acad. Sci. USA 71, 1862–1865 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Whitlock J.P., Simpson R.T.: Removal of histone H1 exposes a fifty base pair DNA segment between nucleosomes. Biochemistry 15, 3307–3314 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Wilkins R.J., Hart R.W.: Preferential DNA repair in human cells. Nature New Biol. 247, 35–36 (1973).

    Article  Google Scholar 

  • Witkin E.M.: Ultraviolet-induced mutation and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907 (1976).

    PubMed  CAS  Google Scholar 

  • Witkin E.M., George D.L.: Ultraviolet mutagenesis in Pol A and Uvr A Pol h derivatives of Escherichia coli B/R: Evidence for an inducible error-prone repair system. Genetics 73 (Suppl), 91–108 (1973).

    PubMed  Google Scholar 

  • Yamada T.: Control mechanisms in cell-type conversion in Newt lens regeneration. In: Monographs in Developmental Biology, Vol. XIII (ed. A. Wolsky), pp. 1–126. Basel: Karger 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Modak, S.P., Unger-Ullmann, C. (1980). Control of Genome Integrity in Terminally Differentiating and Postmitotic Aging Cells. In: McKinnell, R.G., DiBerardino, M.A., Blumenfeld, M., Bergad, R.D. (eds) Differentiation and Neoplasia. Results and Problems in Cell Differentiation, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38267-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38267-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11561-9

  • Online ISBN: 978-3-540-38267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics